Answer:
$180000
Step-by-step explanation:
Let's c be the number of chair and d be the number of desks.
The constraint functions:
- Unit of wood available 4d + 3c <= 2000 or d <= 500 - 0.75c
- Number of chairs being at least twice of desks c >= 2d or d <= 0.5c
c >= 0
d >= 0
The objective function is to maximize the profit function
P (c,d) = 400d + 250c
We draw the 2 constraint functions (500 - 0.75c and 0.5c) on a c-d coordinates (witch c being the horizontal axis and d being the vertical axis) and find the intersection point 0.5c = 500 - 0.75c
1.25c = 500
c = 400 and d = 0.5c = 200 so P(400, 200) = $250*400 + $400*200 = $180,000
The 500 - 0.75c intersect with c-axis at d = 0 and c = 500 / 0.75 = 666 and P(666,0) = 666*250 = $166,500
So based on the available zones in the chart we can conclude that the maximum profit we can get is $180000
If a number has anded we know that the the next to it would be 0, thous it will go like this:
0.015<0.105<0.150<0.501
Answer:
false
Step-by-step explanation:
i dont understand kinda
but if you add it,
88<106
so false