Answer:
$23.40
Step-by-step explanation:
An ellipse is divided into two axes, the longer axis is the
major axis and the shorter axis is the minor axis. The length of the major axis
of an ellipse is equal to the sum of two distance: the distance between any
point on the ellipse and one on focus and the distance between the same point
and the other focus. The focus is the point that helps define an ellipse and
every ellipse has two foci. These two distance are also called the red line
segment and blue line segment. Given 6 for red line segment and 4 for blue line
segment therefore, the length of the major axis of the ellipse is 10.
I believe yes
Each time it goes up by one, it is always increasing by the same amount each time
Your sequence appears to be geometric with a common ratio of 2. It can be described by
a(n) = (-2 2/3)·2^(n-1)
_____
This can be written in a number of other forms, including
a(n) = (-8/3)·2^(n-1)
a(n) = (-1/3)·2^(n+2)
a(n) = (-4/3)·2^n
Answer:
The equation does not have a real root in the interval ![\rm [0,1]](https://tex.z-dn.net/?f=%5Crm%20%5B0%2C1%5D)
Step-by-step explanation:
We can make use of the intermediate value theorem.
The theorem states that if
is a continuous function whose domain is the interval [a, b], then it takes on any value between f(a) and f(b) at some point within the interval. There are two corollaries:
- If a continuous function has values of opposite sign inside an interval, then it has a root in that interval. This is also known as Bolzano's theorem.
- The image of a continuous function over an interval is itself an interval.
Of course, in our case, we will make use of the first one.
First, we need to proof that our function is continues in
, which it is since every polynomial is a continuous function on the entire line of real numbers. Then, we can apply the first corollary to the interval
, which means to evaluate the equation in 0 and 1:

Since both values have the same sign, positive in this case, we can say that by virtue of the first corollary of the intermediate value theorem the equation does not have a real root in the interval
. I attached a plot of the equation in the interval
where you can clearly observe how the graph does not cross the x-axis in the interval.