If <em>x</em> + 1 is a factor of <em>p(x)</em> = <em>x</em>³ + <em>k</em> <em>x</em>² + <em>x</em> + 6, then by the remainder theorem, we have
<em>p</em> (-1) = (-1)³ + <em>k</em> (-1)² + (-1) + 6 = 0 → <em>k</em> = -4
So we have
<em>p(x)</em> = <em>x</em>³ - 4<em>x</em>² + <em>x</em> + 6
Dividing <em>p(x)</em> by <em>x</em> + 1 (using whatever method you prefer) gives
<em>p(x)</em> / (<em>x</em> + 1) = <em>x</em>² - 5<em>x</em> + 6
Synthetic division, for instance, might go like this:
-1 | 1 -4 1 6
... | -1 5 -6
----------------------------
... | 1 -5 6 0
Next, we have
<em>x</em>² - 5<em>x</em> + 6 = (<em>x</em> - 3) (<em>x</em> - 2)
so that, in addition to <em>x</em> = -1, the other two zeros of <em>p(x)</em> are <em>x</em> = 3 and <em>x</em> = 2
Answer:
The geometric mean of the measures of the line segments AD and DC is 60/13
Step-by-step explanation:
Geometric mean: BD² = AD×DC
BD = √(AD×DC)
hypotenuse/leg = leg/part
ΔADB: AC/12 = 12/AD
AC×AD = 12×12 = 144
AD = 144/AC
ΔBDC: AC/5 = 5/DC
AC×DC = 5×5 = 25
DC = 25/AC
BD = √[(144/AC)(25/AC)]
BD = (12×5)/AC
BD= 60/AC
Apply Pythagoras theorem in ΔABC
AC² = 12² + 5²
AC² = 144+ 25 = 169
AC = √169 = 13
BD = 60/13
The geometric mean of the measures of the line segments AD and DC is BD = 60/13
Step-by-step explanation:

all the details are in the attachment.
The area formula for a parallelogram is base*height=area. Make an equation. You know the area and the height, so plug that into the equation, and you get x*18=396. Solve for x by dividing 396 by 18 and you get 22. So, the base is 22cm.
Answer:
Step-by-step explanation:
I will give each that is a statistical question
Subject the students in my class like.
Number of students in my class (as you could compare to another class)
height of each student
serving of fruits eaten in that month
Perhaps height (As you could compare it to the average height)
Highest temp. of each month this year.
How many students love football.