Answer:
8.2+/-0.25
= ( 7.95, 8.45) years
the 95% confidence interval (a,b) = (7.95, 8.45) years
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 8.2 years
Standard deviation r = 1.1 years
Number of samples n = 75
Confidence interval = 95%
z value(at 95% confidence) = 1.96
Substituting the values we have;
8.2+/-1.96(1.1/√75)
8.2+/-1.96(0.127017059221)
8.2+/-0.248953436074
8.2+/-0.25
= ( 7.95, 8.45)
Therefore the 95% confidence interval (a,b) = (7.95, 8.45) years
Answer:
For this case if we want to conclude that the sample does not come from a normally distributed population we need to satisfy the condition that the sample size would be large enough in order to use the central limit theoream and approximate the sample mean with the following distribution:

For this case the condition required in order to consider a sample size large is that n>30, then the best solution would be:
n>= 30
Step-by-step explanation:
For this case if we want to conclude that the sample does not come from a normally distributed population we need to satisfy the condition that the sample size would be large enough in order to use the central limit theoream and approximate the sample mean with the following distribution:

For this case the condition required in order to consider a sample size large is that n>30, then the best solution would be:
n>= 30
V + f − e = 2
<span>Add -2+e to both sides. </span>
<span>v + f − e -2+e = 2 -2+e </span>
<span>On simplification, we get </span>
<span>v + f − 2 = e </span>
<span>Yes, that is the solution for e.</span>