With ϕ ≈ 1.61803 the golden ratio, we have 1/ϕ = ϕ - 1, so that
![I = \displaystyle \int_0^\infty \frac{\sqrt[\phi]{x} \tan^{-1}(x)}{(1+x^\phi)^2} \, dx = \int_0^\infty \frac{x^{\phi-1} \tan^{-1}(x)}{x (1+x^\phi)^2} \, dx](https://tex.z-dn.net/?f=I%20%3D%20%5Cdisplaystyle%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%5B%5Cphi%5D%7Bx%7D%20%5Ctan%5E%7B-1%7D%28x%29%7D%7B%281%2Bx%5E%5Cphi%29%5E2%7D%20%5C%2C%20dx%20%3D%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7Bx%5E%7B%5Cphi-1%7D%20%5Ctan%5E%7B-1%7D%28x%29%7D%7Bx%20%281%2Bx%5E%5Cphi%29%5E2%7D%20%5C%2C%20dx)
Replace
:

Split the integral at x = 1. For the integral over [1, ∞), substitute
:

The integrals involving tan⁻¹ disappear, and we're left with

Answer
Step-by-step explanation:
The answer is C (-1,-4)
I got the answer by graphing the equation and plotting each the points down to see which one lies on the graph
Its 360 beacuse u multiply all of those numbers
Answer:
x = 0
Step-by-step explanation:
if 2y + x = 4
we can assume that y = 2
if y - 3x = 2
it means 2 - 0 = 2
therefore x = 0