Answer:
The answer is 
Step-by-step explanation:
To calculate the volumen of the solid we solve the next double integral:

Solving:

![[6x^{2} ]{{1} \atop {0}} \right. * [\frac{y^{3}}{3}]{{1} \atop {0}} \right.](https://tex.z-dn.net/?f=%5B6x%5E%7B2%7D%20%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%2A%20%5B%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

The plane y=mx divides this volume in two equal parts. So volume of one part is 1.
Since m > 1, hence mx ≤ y ≤ 1, 0 ≤ x ≤ 
Solving the double integral with these new limits we have:

This part is a little bit tricky so let's solve the integral first for dy:
![\int\limits^\frac{1}{m}_0 [{12x \frac{y^{3}}{3}}]{{1} \atop {mx}} \right.\, dx =\int\limits^\frac{1}{m}_0 [{4x y^{3 }]{{1} \atop {mx}} \right.\, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B12x%20%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx%20%3D%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B4x%20y%5E%7B3%20%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx)
Replacing the limits:

Solving now for dx:
![[{\frac{4x^{2}}{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right. = [{2x^{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right.](https://tex.z-dn.net/?f=%5B%7B%5Cfrac%7B4x%5E%7B2%7D%7D%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%3D%20%5B%7B2x%5E%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

As I mentioned before, this volume is equal to 1, hence:

First find slope of line j
(-1-5)/(6+3) = -6/9 = -2/3
Perpendicular = opposite sign and reciprocal slope
Solution: 3/2
Answer:
( $74.623, $83.777)
The 90% confidence interval is = ( $74.623, $83.777)
Critical value at 90% confidence = 1.645
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = $79.20
Standard deviation r = $10.41
Number of samples n = 14
Confidence interval = 90%
Using the z table;
The critical value that should be used in constructing the confidence interval.
z(α=0.05) = 1.645
Critical value at 90% confidence z = 1.645
Substituting the values we have;
$79.20+/-1.645($10.42/√14)
$79.20+/-1.645($2.782189528308)
$79.20+/-$4.576701774067
$79.20+/-$4.577
( $74.623, $83.777)
The 90% confidence interval is = ( $74.623, $83.777)