Answer:
The new temperature is 373 K
Explanation:
Step 1: Data given
Volume air = 5000 mL = 5.0 L
Temperature = 223K
New volume = 8.36 L
Step 2: Calculate the new temperature
V1/T1 = V2/T2
⇒V1 = the initial volume = 5.0 L
⇒T1 = the initial temperature = 223 K
⇒V2 = the new volume = 8.36 L
⇒T2 = the new temperature
5.0/223 = 8.36 /T2
T2 = 373 K
The new temperature is 373 K
Answer:
Ke = 34570.707
Explanation:
- H2(g) + Br2(g) → 2 HBr(g)
equilibrium constant (Ke):
⇒ Ke = [HBr]² / [Br2] [H2]
∴ [HBr] = (37.0 mol) / (2 L) = 18.5 mol/L
∴ [Br2] = (0.110 mol) / (2 L) = 0.055 mol/L
∴ [H2] = (0.360 mol) / (2 L) = 0.18 mol/L
⇒ Ke = (18.5 mol/L)² / (0.055 mol/L)(0.18 mol/L)
⇒ Ke = 34570.707
Answer:
3.43 %
Explanation:
We need to calculate first the number of moles of CeO2 produced in the combustion. Given its formula we know how many moles of Ce atom are present. From there calculate the mass this number of moles this represent and then one can calculate the percentage.
0.1848 g CeO2 x 1 mol CeO2/172.114g = 0.00107 mol CeO2
0.00107 mol CeO2 x 1 mol Ce/ 1 mol CeO2 = 0.00107 mol Ce
.00107 mol Ce x 140.116 g Ce/ mol = 0.150 g Ce
0.150 g Ce/ 4.3718 g sample x 100 = 3.43 %
ideal gas law. but you are talking about moles of gas not miles
Feo + 2H = H2O + Fe + 2 + CIO4-
this is ur answer. .
mrk me as brainlist