1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
3 years ago
15

An asymptote is a line that the graph of a function ___

Mathematics
2 answers:
Dominik [7]3 years ago
7 0

Answer:    C. Approaches but does not cross

Step-by-step explanation:  Basically an asymptote is a line that approaches a given curve which is graph of a function, but it never touches, cross or intersect in any finite. Asymptote can be any line, horizontal, vertical, inclined, which approaches the function graph. Theoretically, according to mathematical principles,  the function graph line is approaching to a asymptote at infinity, and therefore the asymptotes are suitable as the type of guide to complete the graph of the function.

Dmitry [639]3 years ago
3 0

Answer:

Option C. approaches but does not cross.

Step-by-step explanation:

In Maths, an asymptote is a line that the graph (a drawing that shows two sets of related amounts) of a function (e.g. x=1/x) approaches but does not cross (or intersect). The image below illustrates such concept.

You might be interested in
Help!! <br><br> I think I got these wrong, so please help!! Thank you!
Andrew [12]

Answer:

(x+3)(x+4)(x-4)

x+2 and x-3 are not factors but x-4 is

Step-by-step explanation:

let's factor it :)

x^3 + 3x^2 - 16x -48

first we will factor this:

x^3 + 3x^2

x^2(x + 3)

then factor the second part :

- 16x - 48

-16(x + 3)

so now,

x^2(x + 3) - 16(x + 3)

factor out x+3

(x+3)(x^2 - 16)

factor x^2 - 16

(x+3)(x+4)(x-4)

8 0
3 years ago
What are the intercepts of this line?
Fiesta28 [93]

Answer:

x-intercept: -1

y-intercept: 0.5

Step-by-step explanation:

The intercept for each is where the other coordinate is at 0.

7 0
1 year ago
A rectangular swimming pool measures 40 ft by 60 ft and is surrounded by a path of uniform width around the four edges. The peri
Alex_Xolod [135]

Answer:

<em><u>6ft</u></em>

Step-by-step explanation:

<em><u>Lets</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>width</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>path</u></em><em><u> </u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>surrounding </u></em><em><u>path</u></em><em><u> </u></em><em><u>wil</u></em><em><u>l</u></em><em><u> </u></em><em><u>add</u></em><em><u> </u></em><em><u>2x</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>pool</u></em><em><u> </u></em><em><u>dimension</u></em><em><u>,therefore</u></em><em><u> </u></em><em><u>over</u></em><em><u> </u></em><em><u>all</u></em><em><u> </u></em><em><u>dimesion</u></em><em><u>:</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>b</u></em><em><u>y</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>over</u></em><em><u>all</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em><em><u>4</u></em><em><u>8</u></em><em><u> </u></em><em><u>Simplify</u></em><em><u> </u></em><em><u>divide</u></em><em><u> </u></em><em><u>b</u></em><em><u>y</u></em><em><u> </u></em><em><u>2,</u></em><em><u> </u></em><em><u>result</u></em><em><u> </u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em>

<em><u> </u></em><em><u>Combine</u></em><em><u> </u></em><em><u>like</u></em><em><u> </u></em><em><u>term</u></em><em><u>s</u></em><em><u> </u></em><em><u>2x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u> </u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em>

<em><u>4x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em>

<em><u>4x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em>

<em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em>

<em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em><em><u>/</u></em><em><u>4</u></em>

<em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u>ft</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>th</u></em><em><u>e</u></em><em><u> </u></em><em><u>width</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>path</u></em>

<em><u>check</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>by</u></em><em><u> </u></em><em><u>finding</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>with</u></em><em><u> </u></em><em><u>these</u></em><em><u> </u></em><em><u>values</u></em><em><u>;</u></em><em><u> </u></em><em><u>2</u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>12</u></em><em><u> </u></em><em><u>ft</u></em><em><u> </u></em>

<em><u>2</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>4</u></em><em><u>0</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em>

<em><u>2</u></em><em><u>(</u></em><em><u> </u></em><em><u>5</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u>7</u></em><em><u>2</u></em><em><u>)</u></em>

<em><u>1</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em><em><u>4</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em><em><u>4</u></em><em><u>8</u></em><em><u>;</u></em><em><u> </u></em><em><u>confirms</u></em><em><u> </u></em><em><u>our</u></em><em><u> </u></em><em><u>solution</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em><em><u>ft</u></em>

5 0
3 years ago
What is an equation of the line that passes through the points (-3, -2)(−3,−2) and (3, 6)(3,6)? Put your answer in fully reduced
il63 [147K]

Answer:

The equation of the line is y = \frac{4}{3} x + 2

Step-by-step explanation:

The form of the equation that passes through two points (x1, y1) and (x2, y2) is y = m x + b, where

  • m is the slope of the line whose rule is m=\frac{y2-y1}{x2-x1}
  • b is the y-intercept, you can find it by substituting x, y in the equation by (x1, y1) OR (x2, y2)

Let us solve the question:

∵ The line passes through the points (-3, -2) and (3, 6)

∴ x1 = -3 and x2 = 3

∴ y1 = -2 and y2 = 6

→ Use the rule of m to find it

∵ m=\frac{6-(-2)}{3-(-3)}=\frac{6+2}{3+3}=\frac{8}{6}

→ Simplify it by dividing up and down by 2

∴ m = \frac{4}{3}

→ Substitute its value in the form of the equation above

∴ y = \frac{4}{3} x + b

→ To find b substitute x and y by x1 and y1

∴ -2 = \frac{4}{3} (-3) + b

∴ -2 = -4 + b

→ Add 4 to both sides

∴ -2 + 4 = -4 + 4 + b

∴ 2 = b

→ Substitute it in the form of the equation

∴ y = \frac{4}{3} x + 2

∴ The equation of the line is y = \frac{4}{3} x + 2

6 0
3 years ago
Find 2/5 of 128. I need help
hammer [34]
So you would multiply if it has the word of in the problem right?

4 0
4 years ago
Other questions:
  • 7/8 X 9 <br><br><br> HURRY PLEASE
    11·2 answers
  • Determine the unit rate of a marathon runner who travels 9/2 miles in 3/4 hour.
    14·1 answer
  • HELPPP ILL GIVE 70 POINTS!!!!!
    5·1 answer
  • Toni orders school lunch on Mondays, Wednesdays, and Fridays.
    14·2 answers
  • You get 50 points if yu answer the question and the firdt to get it right gets top!!
    13·2 answers
  • Alexa is using 6 pounds of apples to make pies.
    9·1 answer
  • What is the length of the line segment that begins at (2,6) and ends at (7,6)?
    7·1 answer
  • What will the equation be ?
    8·1 answer
  • Solve each word problem by setting up a system of equations.
    5·1 answer
  • Lourdes has created the following challenges for you: She has given you three of the four points necessary to determine a rectan
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!