1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
11

Let the number of chocolate chips in a certain type of cookie have a Poisson distribution. We want the probability that a cookie

of this type contains at least two chocolate chips to be greater than 0.99. Find the smallest value of the mean that the distribution can take.

Mathematics
1 answer:
ludmilkaskok [199]3 years ago
4 0

Answer:

\lambda \geq 6.63835

Step-by-step explanation:

The Poisson Distribution is "a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event".

Let X the random variable that represent the number of chocolate chips in a certain type of cookie. We know that X \sim Poisson(\lambda)

The probability mass function for the random variable is given by:

f(x)=\frac{e^{-\lambda} \lambda^x}{x!} , x=0,1,2,3,4,...

And f(x)=0 for other case.

For this distribution the expected value is the same parameter \lambda

E(X)=\mu =\lambda

On this case we are interested on the probability of having at least two chocolate chips, and using the complement rule we have this:

P(X\geq 2)=1-P(X

Using the pmf we can find the individual probabilities like this:

P(X=0)=\frac{e^{-\lambda} \lambda^0}{0!}=e^{-\lambda}

P(X=1)=\frac{e^{-\lambda} \lambda^1}{1!}=\lambda e^{-\lambda}

And replacing we have this:

P(X\geq 2)=1-[P(X=0)+P(X=1)]=1-[e^{-\lambda} +\lambda e^{-\lambda}[]

P(X\geq 2)=1-e^{-\lambda}(1+\lambda)

And we want this probability that at least of 99%, so we can set upt the following inequality:

P(X\geq 2)=1-e^{-\lambda}(1+\lambda)\geq 0.99

And now we can solve for \lambda

0.01 \geq e^{-\lambda}(1+\lambda)

Applying natural log on both sides we have:

ln(0.01) \geq ln(e^{-\lambda}+ln(1+\lambda)

ln(0.01) \geq -\lambda+ln(1+\lambda)

\lambda-ln(1+\lambda)+ln(0.01) \geq 0

Thats a no linear equation but if we use a numerical method like the Newthon raphson Method or the Jacobi method we find a good point of estimate for the solution.

Using the Newthon Raphson method, we apply this formula:

x_{n+1}=x_n -\frac{f(x_n)}{f'(x_n)}

Where :

f(x_n)=\lambda -ln(1+\lambda)+ln(0.01)

f'(x_n)=1-\frac{1}{1+\lambda}

Iterating as shown on the figure attached we find a final solution given by:

\lambda \geq 6.63835

You might be interested in
The sum of 3 and w is at most – 27.
ankoles [38]

Answer: -30

Step-by-step explanation: im pretty sure this is correct

6 0
3 years ago
What is 10^-3x*10^x= 1/10
densk [106]
Since 1/10=10^-1, and multiplying exponents with the same base just adds the actual exponents at the top, x=2
3 0
3 years ago
Need help for number 4 please
Marina CMI [18]

Answer:

Step-by-step explanation:

4) ΔSTW ≅ ΔBFN . So, corresponding parts of congruent triangles are congruent.

a) BN = SW                                        d) m∠W = m∠N

  BN = 9 cm                                           m∠W = 82°

b) TW = FN                                        e) m∠B = m∠S

TW = 14 cm                                            m∠B = 67°

c) BF = ST                                          f) m∠B + m∠N + m∠F = 180°

  BF = 17 cm                                                 67 + 82 + m∠F = 180

                                                                            149 + m∠F = 180

                                                                                     m∠F = 180 - 149

                                                                                      m∠F = 31°          

5) ΔUVW ≅ ΔTSR

UV = TS

12x - 7 = 53

   12x   = 53+7

   12x = 60

      x = 60/12

      x = 5

UW =TR

3z +14 = 50

    3z = 50 - 14

   3z = 36

     z = 36/3

    z = 12

SR =VW

5y - 33 = 57

     5y = 57 + 33

     5y = 90

       y = 90/5

       y = 18

7) ΔPHS ≅ ΔCNF

∠C = ∠P

4z - 32 = 36

      4z = 36 + 32

       4z = 68

        z = 68/4

       z = 17

∠H = ∠N

6x - 29 = 115

  6x     = 115 + 29

      6x = 144

        x = 144/6

       x = 24

∠P + ∠H + ∠S = 180   {Angle sum property of triangle}

36 +115 + ∠S = 180

      151   + ∠S = 180

                ∠S = 180 - 151

               ∠S = 29°

∠F = ∠S

3y - 1 = 29

   3y = 29 + 1

  3y = 30

    y = 30/3

    y = 10

8) ΔDEF ≅ ΔJKL

DE = 18    ;  EF = 23

DF = 9x - 23

JL= 7x- 11

DF = JL           {Corresponding parts of congruent triangles}

      9x - 23 = 7x - 11

9x  - 7x - 23 = -11

        2x - 23 = -11

               2x = -11 + 23

               2x = 12

                 x = 12/2

                x = 6      

JK   = DE           {Corresponding parts of congruent triangles}

3y - 21  = 18

       3y = 18 + 21

        3y = 39

         y = 39/3

        y = 13

4 0
3 years ago
Figure A is translated 3 units right and 2 units up. The translated figure is labeled figure B. Figure B is reflected over the x
morpeh [17]

Answer:

b

Step-by-step explanation:

7 0
3 years ago
I need to know division
ruslelena [56]
What do you need to know? give me an equation and i'll help you solve it
4 0
3 years ago
Other questions:
  • Sam want to mark a point for 3/4 on the number line into how many parts explain
    13·1 answer
  • Four polynomials are shown below: A. 3 − 7x5 + x2 B. 5x3 + 5 − 3x C. 3x + 2x3 − x2 + 6 + 2x D. 3x3 − 5 + 2x5 + x + 2x2 Which of
    9·1 answer
  • What should be done to solve the following equation d - 8 equals 9
    11·2 answers
  • Suppose that a loan of $6000 is given at an interest rate of 9% compounded each year.
    5·2 answers
  • What is 36t squared plus 4s squared
    5·1 answer
  • 4. If 7a = 14, then 12a -
    5·2 answers
  • 4 p^2 without exponents
    14·1 answer
  • PLEASE HELP WILL GIVE BRAINLIEST AND 15+ PONINTS AND PLEASE DONT PUT A RANDOM ANSWER OR TRY TO STEAL MY POINTS PLEASE AND THANKS
    13·2 answers
  • If cos x = sin(20 + x)° and 0° < x < 90°, the value of x is what?
    5·2 answers
  • 1) f(4) = g(4)<br> 2) f(4) = g(-2)<br> 3) f(2) = g(-2)<br> 4) f(-2) = g(-2)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!