Answer:
- 3log(10) -2log(5) ≈ 1.60206
- no; rules of logs apply to any base. ln(x) ≈ 2.302585×log(x)
- no; the given "property" is nonsense
Step-by-step explanation:
<h3>1.</h3>
The given expression expression can be simplified to ...
3log(10) -2log(5) = log(10^3) -log(5^2) = log(1000) -log(25)
= log(1000/25) = log(40) . . . . ≠ log(5)
≈ 1.60206
Or, it can be evaluated directly:
= 3(1) -2(0.69897) = 3 -1.39794
= 1.60206
__
<h3>2.</h3>
The properties of logarithms apply to logarithms of any base. Natural logs and common logs are related by the change of base formula ...
ln(x) = log(x)/log(e) ≈ 2.302585·log(x)
__
<h3>3.</h3>
The given "property" is nonsense. There is no simplification for the product of logs of the same base. There is no expansion for the log of a sum. The formula for the log of a power does apply:

Numerical evaluation of Mr. Kim's expression would prove him wrong.
log(3)log(4) = (0.47712)(0.60206) = 0.28726
log(7) = 0.84510
0.28726 ≠ 0.84510
log(3)log(4) ≠ log(7)
Answer:
cos3x+tan3x=0
⟹cos3x=−tan3x
⟹cos3x=−sin3xcos3x
⟹cos23x=−sin3x
⟹1−sin23x=−sin3x
⟹sin23x−sin3x−1=0
This is a quadratic equation in sin3x.
sin3x=−(−1)±(−1)2−4×1×(−1)−−−−−−−−−−−−−−−−−√2×1
sin3x=1±5–√2
If x takes real values, the upper sign must be rejected.
sin3x=1−5–√2
⟹3x=nπ+(−1)nsin−11−5–√2
⟹x=13[nπ+(−1)nsin−11−5–√2]
Step-by-step explanation:
Hope this kind of helps
Answer:
1 minute
Step-by-step explanation:
We can see that Lisa types 165 words in 3 mins.
So she types 55 words in 1 minute.
How did I work that out?
Well, all you really do is
which is equal to
if you divide top and bottom by 3. Anything divided by 1 is itself.
Answer:
x=7, x=3
Step-by-step explanation:





positive


negative

