I can tell you that is 50 cents for cantaloupe at that price....
So I think he'd have to charge $1.50. He'd get what he paid for back plus a dollar. If C= one cantaloupe ....it would look something like
p > $1.50c
BECAUSE 1.50 x 14 = 21 minus the 7 he paid would leave you with 14... on dollar per cantaloupe... so the price can be anything greater than $1.50
So i think in the school there may be 4800 in the school. Hope this helps
Answer:
OPTION A: 2x + 3y = 5
Step-by-step explanation:
The product of slopes of two perpendicular lines is -1.
We rewrite the given equation as follows:
2y = 3x + 2
⇒ y = 
The general equation of the line is: y = mx + c, where 'm' is the slope of the line.
Here, m =
.
Therefore, the slope of the line perpendicular to the line given =
because
.
To determine the equation of the line passing through the given point and a slope we use the Slope - One - point formula which is:
y - y₁ = m(x - x₁)
The point is: (x₁, y₁) = (-2, 3)
Therefore, the equation is:
y - 3 =
(x + 2) $
⇒ 3y - 9 = -2(x + 2)
⇒ 3y - 9 = -2x - 4
⇒ 2x + 3y = 5 is the required equation.
The transformed equation y = -(x - 2)^2 - 3 compared to the parent function involves translating the parent function to the right by 2 units, reflecting the function across the y-axis and translating the function 3 units down
<h3>How to compare the function to its parent function?</h3>
The equation of the transformed function is given as:
y = -(x - 2)^2 - 3
While the equation of the parent function is given as
y = x^2
Start by translating the parent function to the right by 2 units.
This is represented as:
(x, y) = (x - 2, y)
So, we have:
y = (x - 2)^2
Next, reflect the above function across the y-axis
This is represented as:
(x, y) = (-x, y)
So, we have:
y = -(x - 2)^2
Lastly, translate the above function 3 units down
This is represented as:
(x, y) = (x, y - 3)
So, we have:
y = -(x - 2)^2 - 3
Hence, the transformed equation y = -(x - 2)^2 - 3 compared to the parent function involves translating the parent function to the right by 2 units, reflecting the function across the y-axis and translating the function 3 units down
Read more about function transformation at:
brainly.com/question/8241886
#SPJ1