Volume of the first aquarium = (12" x 13" x 14") = 2,184 inches³
Volume of the second aquarium = (32" x 34" x 35") = 38,080 inches³
The second aquarium has (38,080 / 2,184) = 17.44 times as much
volume as the first aquarium has.
So it'll take the hose 17.44 times as long to fill the second one
= (17.44) x (2 minutes) = 34.9 minutes.
-33 / 11 = ?
-33/11
Simplify
-3/1 would be the answer
<span>(3.5, 3) is the circumcenter of triangle ABC.
The circumcenter of a triangle is the intersection of the perpendicular bisectors of each side. All three of these perpendicular bisectors will intersect at the same point. So you have a nice self check to make sure your math is correct. Now let's calculate the equation for these bisectors.
Line segment AB:
Slope
(4-2)/(1-1) = 2/0 = infinity.
This line segment is perfectly vertical. So the bisector will be perfectly horizontal, and will pass through ((1+1)/2, (4+2)/2) = (2/2, 6/2) = (1,3).
So the equation for this perpendicular bisector is y = 3.
Line segment BC
(2-2)/(6-1) = 0/5 = 0
This line segment is perfectly horizontal. So the bisector will be perfectly vertical, and will pass through ((1+6)/2,(2+2)/2) = (7/2, 4/2) = (3.5, 2)
So the equation for this perpendicular bisector is x=3.5
So those two bisectors will intersect at point (3.5,3) which is the circumcenter of triangle ABC.
Now let's do a cross check to make sure that's correct.
Line segment AC
Slope = (4-2)/(1-6) = 2/-5 = -2/5
The perpendicular will have slope 5/2 = 2.5. So the equation is of the form
y = 2.5*x + b
And will pass through the point
((1+6)/2, (4+2)/2) = (7/2, 6/2) = (3.5, 3)
Plug in those coordinates and calculate b.
y = 2.5x + b
3 = 2.5*3.5 + b
3 = 8.75 + b
-5.75 = b
So the equation for the 3rd bisector is
y = 2.5x - 5.75
Now let's check if the intersection with this line against the other 2 works.
Determining intersection between bisector of AC and AB
y = 2.5x - 5.75
y = 3
3 = 2.5x - 5.75
8.75 = 2.5x
3.5 = x
And we get the correct value. Now to check AC and BC
y = 2.5x - 5.75
x = 3.5
y = 2.5*3.5 - 5.75
y = 8.75 - 5.75
y = 3
And we still get the correct intersection.</span>
Let x = width
x+1 is then the length
2x+2(x+1)=66
2x+2x+2=66
4x=64
x=16
deck will be 16x17, nice for a BBQ. :)
The distance between two points on the plane is given by the formula below
![\begin{gathered} A=(x_1,y_1),B=(x_2,y_2) \\ \Rightarrow d(A,B)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%28x_1%2Cy_1%29%2CB%3D%28x_2%2Cy_2%29%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D%20%5Cend%7Bgathered%7D)
Therefore, in our case,

Thus,
![\begin{gathered} \Rightarrow d(A,B)=\sqrt[]{(-1-5)^2+(-3-2)^2}=\sqrt[]{6^2+5^2}=\sqrt[]{36+25}=\sqrt[]{61} \\ \Rightarrow d(A,B)=\sqrt[]{61} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B%28-1-5%29%5E2%2B%28-3-2%29%5E2%7D%3D%5Csqrt%5B%5D%7B6%5E2%2B5%5E2%7D%3D%5Csqrt%5B%5D%7B36%2B25%7D%3D%5Csqrt%5B%5D%7B61%7D%20%5C%5C%20%5CRightarrow%20d%28A%2CB%29%3D%5Csqrt%5B%5D%7B61%7D%20%5Cend%7Bgathered%7D)
Therefore, the answer is sqrt(61)
In general,

Remember that

Therefore,