Answer:
The correct option is: AgNO₃(aq) + KCl(aq) = AgCl(s) + KNO₃(aq)
Explanation:
Precipitation reaction is a chemical reaction that involves reaction between <em>two soluble salts to give an insoluble salt.</em> This <u>insoluble salt exists as a solid</u> and settles down.
Therefore, the solid formed in a precipitation reaction is known as the precipitate.
As the solid silver nitrate (AgNO₃) and solid potassium chloride (KCl) are <u>soluble in water</u>, therefore, their aqueous solutions are represented as AgNO₃(aq) and KCl(aq), respectively.
The precipitation reaction of AgNO₃(aq) and KCl(aq) gives an <u>insoluble salt, silver chloride (AgCl) and a soluble salt, potassium nitrate (KNO₃).</u>
The insoluble salt, <u>AgCl is called the precipitate</u> and is represented as AgCl(s). Whereas, the <u>soluble salt</u>, KNO₃ is represented as KNO₃ (aq).
<u>Therefore, the chemical equation for this precipitation reaction is:</u>
AgNO₃(aq) + KCl(aq) → AgCl(s) + KNO₃(aq)
Answer:
Kp is 0.00177
Explanation:
We state the equilibrium:
CO(g) + Cl₂(g) ⇆ COCl₂(g)
Initially we have these partial pressures
1.86 atm for CO and 1.27 for chlorine.
During the reaction, x pressure has been converted. As we have 0.823 atm as final pressure in the equilibrium for COCl₂, pressure at equilibrium for CO and chlorine will be:
1.86 - x for CO and 1.27 - x for Cl₂.
And x is the pressure generated for the product, because initially we don't have anything from it. So pressure in equilibrium for the reactants will be:
1.86 - 0.823 = 1.037 atm for CO
1.27 - 0.823 = 0.447 atm for Cl₂
Let's make, expression for Kp:
Partial pressure in eq. for COCl₂ / P. pressure in eq. for CO . P pressure in eq. for Cl₂
Kp = 0.823 / (1.037 . 0.447) → 0.00177
Answer:

Explanation:
a) Balanced equation
The balanced chemical equation for the titration is

b) pH at start
For simplicity, let's use B as the symbol for NH₃.
The equation for the equilibrium is

(i) Calculate [OH]⁻
We can use an ICE table to do the calculation.
B + H₂O ⇌ BH⁺ + OH⁻
I/mol·L⁻¹: 0.150 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 0.150 - x x x
![K_{\text{b}} = \dfrac{\text{[BH}^{+}]\text{[OH}^{-}]}{\text{[B]}} = 1.8 \times 10^{-5}\\\\\dfrac{x^{2}}{0.150 - x} = 1.8 \times 10^{-5}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bb%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BBH%7D%5E%7B%2B%7D%5D%5Ctext%7B%5BOH%7D%5E%7B-%7D%5D%7D%7B%5Ctext%7B%5BB%5D%7D%7D%20%3D%201.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.150%20-%20x%7D%20%3D%201.8%20%5Ctimes%2010%5E%7B-5%7D)
Check for negligibility:

(ii) Solve for x
![\dfrac{x^{2}}{0.150} = 1.8 \times 10^{-5}\\\\x^{2} = 0.150 \times 1.8 \times 10^{-5}\\x^{2} = 2.7 \times 10^{-6}\\x = \sqrt{2.7 \times 10^{-6}}\\x = \text{[OH]}^{-} = 1.64 \times 10^{-3} \text{ mol/L}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.150%7D%20%3D%201.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%200.150%20%5Ctimes%201.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5Cx%5E%7B2%7D%20%3D%202.7%20%5Ctimes%2010%5E%7B-6%7D%5C%5Cx%20%3D%20%5Csqrt%7B2.7%20%5Ctimes%2010%5E%7B-6%7D%7D%5C%5Cx%20%3D%20%5Ctext%7B%5BOH%5D%7D%5E%7B-%7D%20%3D%201.64%20%5Ctimes%2010%5E%7B-3%7D%20%5Ctext%7B%20mol%2FL%7D)
(iii) Calculate the pH
(c) pH at equivalence point
(i) Calculate the moles of each species

B + HI ⇌ BH⁺ + I⁻
I/mol: 3.00 3.00 0
C/mol: -3.00 -3.00 +3.00
E/mol/: 0 0 3.00
(ii) Calculate the concentration of BH⁺
At the equivalence point we have a solution containing 3.00 mmol of NH₄I
Volume = 20.00 mL + 20.00 mL = 40.00 mL
![\rm [BH^{+}] = \dfrac{\text{3.00 mmol}}{\text{40.00 mL}} = \text{0.0750 mol/L}](https://tex.z-dn.net/?f=%5Crm%20%5BBH%5E%7B%2B%7D%5D%20%3D%20%5Cdfrac%7B%5Ctext%7B3.00%20mmol%7D%7D%7B%5Ctext%7B40.00%20mL%7D%7D%20%3D%20%5Ctext%7B0.0750%20mol%2FL%7D)
(iii) Calculate the concentration of hydronium ion
We can use an ICE table to organize the calculations.
BH⁺+ H₂O ⇌ H₃O⁺ + B
I/mol·L⁻¹: 0.0750 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 0.0750 - x x x

![\dfrac{x^{2}}{0.0750} = 5.56 \times 10^{-10}\\\\x^{2} = 0.0750 \times 5.56 \times 10^{-10}\\x^{2} = 4.17 \times 10^{-11}\\x = \sqrt{4.17 \times 10^{-11}}\\\rm [H_{3}O^{+}] =x = 6.46 \times 10^{-6}\, mol \cdot L^{-1}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.0750%7D%20%3D%205.56%20%5Ctimes%2010%5E%7B-10%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%200.0750%20%5Ctimes%205.56%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cx%5E%7B2%7D%20%3D%204.17%20%5Ctimes%2010%5E%7B-11%7D%5C%5Cx%20%3D%20%5Csqrt%7B4.17%20%5Ctimes%2010%5E%7B-11%7D%7D%5C%5C%5Crm%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%20%3Dx%20%3D%206.46%20%5Ctimes%2010%5E%7B-6%7D%5C%2C%20mol%20%5Ccdot%20L%5E%7B-1%7D)
(iv) Calculate the pH
![\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{6.46 \times 10^{-6}} = \large \boxed{\mathbf{5.19}}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20-%5Clog%7B%5Crm%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%3D%20-%5Clog%7B6.46%20%5Ctimes%2010%5E%7B-6%7D%7D%20%3D%20%5Clarge%20%5Cboxed%7B%5Cmathbf%7B5.19%7D%7D)
The titration curve below shows the pH at the beginning and at the equivalence point of the titration.