Answer:
a) 7.0 moles of NH3
b) 61.2 g of NH3
c) 4.15 g of H2
d) 8.9 ×10^19 molecules
Explanation:
Equation of the reaction;
N2(g) + 3H2(g) ⇄NH3(g)
a)
If 3 moles of H2 yields 1 mole of NH3
21 moles of H2 will yield 21 × 1 /3 = 7.0 moles of NH3
b)
1 mole of N2 yields 17 g of NH3
3.6 moles of N2 yields 3.6 moles × 17 g of NH3 = 61.2 g of NH3
c)
If 6g of H2 produces 17 g of NH3
xg of H2 will produce 11.76 g of NH3
x= 6 × 11.76/17
x= 4.15 g of H2
d)
If 6g of hydrogen yields 6.02 × 10^23 molecules of NH3
8.86 × 10^-4g of H2 yields 8.86 × 10^-4g × 6.02 × 10^23 /6 = 8.9 ×10^19 molecules
Answer:
Anode (oxidation): Cr(s) ⇒ Cr³⁺(aq) + 3 e⁻
Cathode (reduction): Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
Explanation:
Let's consider the notation of a galvanic cell.
Cr(s) | Cr³⁺(aq) || Ag⁺(aq) | Ag(s)
On the left, it is represented the anode (oxidation) and on the right, it is represented the cathode (reduction).
The half-reactions are:
Anode (oxidation): Cr(s) ⇒ Cr³⁺(aq) + 3 e⁻
Cathode (reduction): Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
To have the global reaction, we have to multiply the reduction by 3 (so the number of electrons gained and lost are the same) and add both half-reactions.
Global reaction: Cr(s) + 3 Ag⁺(aq) ⇒ Cr³⁺(aq) + 3 Ag(s)
Answer:
The correct option is A
Explanation:
An independent variable is <u>a variable that is intentionally altered (directly or indirectly) and is not dependent on another variable</u> in the course of an experiment. Unlike the independent variable, the dependent variable depends or is presumed to depend on the altered independent variables.
From the explanation above, it can be deduced that the concentration of the catalase is the independent variable as it was intentionally altered (by using different concentrations) in the course of the experiment. The amount of oxygen given off is the dependent variable here
Answer:
The correct answer is option B.
Explanation:
Endothermic reactions are defined as the reactions in which energy of products is more than the energy of the reactants. In these reactions, energy is absorbed by the system.
The total enthalpy of the reaction
comes out to be positive.
Exothermic reactions are defined as the reactions in which energy of reactants is more than the energy of the products. In these reactions, energy is released by the system.
The total enthalpy of the reaction
comes out to be negative.
On mixing of both solution we had observed that temperature of the resulting solution was lowered this is because the energy was absorbed during the chemical reaction.
Answer is 30.0mL
according to the question dilution is performed by the student which can be calculated with the help of :
EQUATION (1)
Here, we have:
= 3M
= y mL
= 1.80 M
= 50.0mL
putting the known values in equation (1) which will give us value of 
3.00× y =1.80 ×50.0
y= 30.0mL