Answer:
6.34917360^25g
Explanation:
It's been a while since I've done this type of problem so I'm not making any promises that its right hahaha, but I hope it helps anyway. Please let me know whether I'm right or not!
Answer:
51207 torr is the new pressure of the gas
Explanation:
We can solve this question using combined gas law that states:
P1V1T2 = P2V2T1
<em>Where P is pressure, V volume and T absolute temperature of 1, initial state and 2, final state of the gas</em>
<em> </em>
Computing the values of the problem:
P1 = 710torr
V1 = 5.0x10²mL
T1 = 273.15 + 30°C = 303.15K
P2 = ?
V2 = 25mL
T2 = 273.15 + 820°C = 1093.15K
Replacing:
710torr*5.0x10²mL*1093.15K = P2*25mL*303.15K
3.881x10⁸torr*mL*K = P2 * 7.579x10³mL*K
P2 = 51207 torr is the new pressure of the gas
Answer : The total mass of oxygen gas released in the reaction will be, 12.8 grams
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

According to the law of conservation of mass,
Total mass of reactant side = Total mass of product side
Total mass of
= Total mass of 
or,
Total mass of
= Mass of
+ Mass of 
As we are given :
Total mass of
= 16.12 grams
The mass of
= 9.72 grams
So,
Total mass of
= Mass of
+ Mass of 


Therefore, the total mass of oxygen gas released in the reaction will be, 12.8 grams
Higher. Because this type of heat transfer is conduction, meaning that heat always transfers to cooler objects.