Answer:
a) 1.224 %.
b) 2.0 %.
c) 3.7 %.
d) 5.94 %.
Explanation:
- To solve this problem, we have the relation:
<em>Ka = (α²C)/(1 - α),</em>
where, Ka is the Dissociation Constant of the acid; C is the Concentration of the acidic solution; and α is the degree of dissociation of the acid.
- <em>Since, α is a very small value, (1 - α) ≅ 1.</em>
∴ Ka = (α²C).
∴ α = √(Ka/C).
<u><em>a) 1.20 M:</em></u>
∵ α = √(Ka.C)
Ka of formic acid = 1.8 x 10⁻⁴, C = 1.2 M.
∴ α = √(Ka/C) = √(1.8 x 10⁻⁴)/(1.2) = 0.01224.
<em>∴ The percent of ionization = α x 100 = 1.224 %.</em>
<em></em>
<u><em>b) 0.45 M:</em></u>
∵ α = √(Ka.C)
Ka of formic acid = 1.8 x 10⁻⁴, C = 0.45 M.
∴ α = √(Ka/C) = √(1.8 x 10⁻⁴)/(0.45) = 0.02.
<em>∴ The percent of ionization = α x 100 = 2.0 %.</em>
<em></em>
<u><em>c) 0.13 M:</em></u>
∵ α = √(Ka.C)
Ka of formic acid = 1.8 x 10⁻⁴, C = 0.13 M.
∴ α = √(Ka/C) = √(1.8 x 10⁻⁴)/(0.13) = 0.037.
<em>∴ The percent of ionization = α x 100 = 3.7 %.</em>
<em></em>
<u><em>d) 5.10 x 10⁻² M:</em></u>
∵ α = √(Ka.C)
Ka of formic acid = 1.8 x 10⁻⁴, C = 5.10 x 10⁻² M.
∴ α = √(Ka/C) = √(1.8 x 10⁻⁴)/(5.10 x 10⁻²) = 0.0594.
<em>∴ The percent of ionization = α x 100 = 5.94 %.</em>