Six point eight four.
(Note, you don't say, "Six point eighty-four" As it doesn't sound correct.
Cheers.
1) No, because the line does not divide the figure into two mirrored images.
2)Yes, because the line divides the figure into two mirrored images.
3) Yes, because the line divides the figure into two mirrored images.
4)No, because the line does not divide the figure into two mirrored images.
5)One line, vertical down the middle.
6) Zero lines, because the figure can not be divided into mirrored images.
7)Four lines, horizontal down the middle, vertical down the middle and diagonal down from each top corner.
8) One line, vertical down the middle
Well, we could try adding up odd numbers, and look to see when we reach 400. But I'm hoping to find an easier way.
First of all ... I'm not sure this will help, but let's stop and notice it anyway ...
An odd number of odd numbers (like 1, 3, 5) add up to an odd number, but
an even number of odd numbers (like 1,3,5,7) add up to an even number.
So if the sum is going to be exactly 400, then there will have to be an even
number of items in the set.
Now, let's put down an even number of odd numbers to work with,and see
what we can notice about them:
1, 3, 5, 7, 9, 11, 13, 15 .
Number of items in the set . . . 8
Sum of all the items in the set . . . 64
Hmmm. That's interesting. 64 happens to be the square of 8 .
Do you think that might be all there is to it ?
Let's check it out:
Even-numbered lists of odd numbers:
1, 3 Items = 2, Sum = 4
1, 3, 5, 7 Items = 4, Sum = 16
1, 3, 5, 7, 9, 11 Items = 6, Sum = 36
1, 3, 5, 7, 9, 11, 13, 15 . . Items = 8, Sum = 64 .
Amazing ! The sum is always the square of the number of items in the set !
For a sum of 400 ... which just happens to be the square of 20,
we just need the <em><u>first 20 consecutive odd numbers</u></em>.
I slogged through it on my calculator, and it's true.
I never knew this before. It seems to be something valuable
to keep in my tool-box (and cherish always).
Answer: -2
Step-by-step explanation: