Ok so to find which sides are congruent we need to know their lengths.
To find the length we need the distance formula between two point ->
√(X2-X1)∧2 +(Y2-Y1)∧2
Ok lets find the first side PQ
P(-1,3) Q(2,-1)
X1 Y1 X2 Y2
√(2-(-1)∧2 + (-1-3)∧2 = 5
Now PR
P (-1,3) R (5,3)
X1 Y1 X2 Y2
√(5-(-1))∧2 + (3-3)∧2) = 6
Now the last side QR
Q (2, -1) R (5,3)
X1 Y1 X2 Y2
√(5-2)∧2 + (3-(-1))∧2 = 5
From the above work we see that PQ and QR are congruent becuase they are equal PQ=QR
Also the opposite angles of these sides are congruent. Hope this helps :).
2 x (5-2)^3
2 x (3)^3
2 x 27
54
Answer:
6*(6^-3)=0.027777 recurring
Step-by-step explanation:
6^0=1
6^-3=0.004629629 recuuring
0.004629629 recurring *6=0.0.02777recurring
Answer:
2 : 1
Explanation:
![\sf area \ of \ sector: \dfrac{\theta}{360} \pi r^2](https://tex.z-dn.net/?f=%5Csf%20area%20%5C%20of%20%5C%20sector%3A%20%5Cdfrac%7B%5Ctheta%7D%7B360%7D%20%5Cpi%20r%5E2)
<u>1st sector</u>:
![\sf \rightarrow area: \dfrac{80}{360} \pi (8)^2 = 44.68 \ cm^2](https://tex.z-dn.net/?f=%5Csf%20%5Crightarrow%20area%3A%20%5Cdfrac%7B80%7D%7B360%7D%20%5Cpi%20%288%29%5E2%20%20%3D%2044.68%20%5C%20cm%5E2)
<u>2nd sector</u>:
![\sf \rightarrow area: \dfrac{160}{360} \pi (4)^2 = 22.34 \ cm^2](https://tex.z-dn.net/?f=%5Csf%20%5Crightarrow%20area%3A%20%5Cdfrac%7B160%7D%7B360%7D%20%5Cpi%20%284%29%5E2%20%20%3D%2022.34%20%5C%20cm%5E2)
Ratio of 1st sector to 2nd sector:
44.68 : 22.34
2 : 1
Answer: 22
Step-by-step explanation:
just plug in 5 Hope I help u