Answer:

Explanation:
As we know that


also we know that

it is given as


also we can find the magnitude of two vectors as


similarly we have


now we know the formula of dot product as




At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v:
If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.
Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).
The initial PE = mgh₁ and the initial KE = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
Therefore
(KE + PE) ₁ = (KE + PE)₂
Evaluate the given answers.
A) The total mechanical energy of the system increases.
FALSE
B) Potential energy can be converted into kinetic energy but not vice versa.
TRUE
C) (KE + PE)beginning = (KE + PE) end.
TRUE
D) All of the above.
FALSE
Answer:
The force exerted by the floor is 80 N.
Explanation:
Given that,
Mass of ball = 0.5 kg
Velocity= 4 m/s
Time t = 0.05 s
When the ball rebounds then the kinetic energy is

Where, m = mass of ball
v = velocity of ball
Put the value into the formula


The average force exerted by the floor on the ball = change in kinetic energy over collision time


Hence, The force exerted by the floor is 80 N.
For a current-carrying wire running perpendicular to a magnetic field, the magnetic force acting on the wire is given by:
F = ILB
F = magnetic force, I = current, L = wire length, B = magnetic field strength
Given values:
F = 0.60N, L = 1.0m, B = 0.20T
Plug in and solve for I:
0.60 = I(1.0)(0.20)
I = 3.0A