1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
5

A mass m attached to a horizontal massless spring with spring constant k, is set into simple harmonic motion. its maximum displa

cement from its equilibrium position is
a. what is the masses speed as it passes through its equilibrium position?
Physics
1 answer:
Lesechka [4]3 years ago
6 0
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:
U_i= \frac{1}{2} ka^2
while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:
K_i =0
And the total energy of the system is
E_i = U_i+K= \frac{1}{2}ka^2

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:
U_f = 0
while the mass is moving at speed v, and therefore the kinetic energy is
K_f =  \frac{1}{2} mv^2
And the total energy is
E_f = U_f + K_f =  \frac{1}{2} mv^2

For the law of conservation of energy, the total energy must be conserved, therefore E_i = E_f. So we  can write
\frac{1}{2} ka^2 =  \frac{1}{2}mv^2
that we can solve to find an expression for v:
v= \sqrt{ \frac{ka^2}{m} }
You might be interested in
A horizontal 810-N merry-go-round of radius 1.60 m is started from rest by a constant horizontal force of 55 N applied tangentia
Sloan [31]

Answer:

576 joules

Explanation:

From the question we are given the following:

weight = 810 N

radius (r) = 1.6 m

horizontal force (F) = 55 N

time (t) = 4 s

acceleration due to gravity (g) = 9.8 m/s^{2}

K.E = 0.5 x MI x ω^{2}

where MI is the moment of inertia and ω is the angular velocity

MI = 0.5 x m x r^2

mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg

MI = 0.5 x 82.65 x 1.6^{2}

MI = 105.8 kg.m^{2}

angular velocity (ω) = a x t

angular acceleration (a) = torque ÷ MI

where torque = F x r = 55 x 1.6 = 88 N.m

a= 88 ÷ 105.8 = 0.83 rad /s^{2}

therefore

angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s

K.E = 0.5 x MI x ω^{2}

K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules

6 0
3 years ago
Two ropes have equal length and are stretched the same way. The speed of a pulse on rope 1 is 1.4 times the speed on rope 2. Par
kondor19780726 [428]

Answer:

m1/m2 = 0.51

Explanation:

First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:

V = √F/u

This is the equation that describes the relation between speed of a pulse and a force exerted on it.

the value of "u" is:

u = m/L

Where m is the mass of the rod, and L the length.

Now, for the rod 1:

V1 = √F/u1 (1)

rod 2:

V2 = √F/u2 (2)

Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:

1.4V2 = √F/u1 (3)

Replacing (2) in (3):

1.4(√F/u2) = √F/u1 (4)

Now, let's solve the equation 4:

[1.4(√F/u2)]² = F/u1

1.96(F/u2) =F/u1

1.96F = F*u2/u1

1.96 = u2/u1 (5)

Now, replacing the expression of u into (5) we have the following:

1.96 = m2/L / m1/L

1.96 = m2/m1 (6)

But we need m1/m2 so:

1.96m1 = m2

m1/m2 = 1/1.96

m1/m2 = 0.51

5 0
4 years ago
What is a period in physics?<br>​
Citrus2011 [14]

Answer:

The period of a wave is the time for a particle on a medium to make one complete vibrational cycle. Period, being a time, is measured in units of time such as seconds, hours, days or years. The period of orbit for the Earth around the Sun is approximately 365 days; it takes 365 days for the Earth to complete a cycle.

3 0
3 years ago
A 0.001kg bullet is fired with a velocity of 800m/s into a soft wood of mass 1kg resting on a smooth surface. Find the final vel
V125BC [204]

The final velocity of the bullet+block is 0.799 m/s

Explanation:

We can solve this problem by applying the principle of conservation of momentum: in fact, the total momentum of the bullet-block system must be conserved before and after the collision.

Mathematically, we can write:

mu+MU=(m+M)v

where

m = 0.001 kg is the mass of the bullet

u = 800 m/s is the initial velocity of the bullet

M = 1 kg is the mass of the block

U = 0 is the initial velocity of the block (initially at rest)

v is the final combined velocity of the bullet and the block

Solving the equation for v, we  find the final velocity:

v=\frac{mu}{m+M}=\frac{(0.001)(800)}{0.001+1}=0.799 m/s

Learn more about conservation of momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

4 0
3 years ago
An automobile engine can produce 153 N · m of torque. Calculate the angular acceleration (in rad/s^2) produced if 85.2% of this
galina1969 [7]

Answer:

46.2 rad/s2

Explanation:

Angular acceleration works very similar to linear acceleration, it follows this equation:

\gamma = \frac{Mt}{J}

Where:

γ: angular acceleration

Mt: torque

J: moment of inertia of the load from its turning axis

Since we have the torque we just need the moment of inertia. We have to add together the moments of the drive shaft, tires, wheel walls and wheels.

The wheels act like disks. For disks the moment of inertia is:

J = \frac{1}{2} * m * r^2

Jwheel = \frac{1}{2} = 15 * 0.18^2 = 0.243 kg*m^2

The wheel walls act like annular rings, for these the moment of inertia is:

J = \frac{1}{2} * m * (re^2 - ri^2)

Jwall = \frac{1}{2} * 2 * (0.32^2 - 0.18^2) = 0.07 kg * m^2

The tread acts like a hoop, as in mass concentrated into a circunference, for these:

J = m * r^2

Jtread = 10 * 0.33^2 = 1.09 kg*m^2

The axle acts like a rod, which is the same as the disk:

Jaxle = \frac{1}{2} * 14.1 * 0.02^2 = 0.0028 kg*m^2

The drive shaft acts like a rod too:

Jshaft = \frac{1}{2} * 31.7 * 0.032^2 = 0.016 kg*m^2

SO, the total moment of inertia is:

J = 2*Jwheel + 2*Jwall + 2*Jtread + Jaxle + Jshaft

J = 2*0.243 + 2*0.07 + 2*1.09 + 0.0028 + 0.016 = 2.82 kg*m2

Finally the angular acceleration is:

\gamma = \frac{0.852 * 153}{2.82} = 46.2 \frac{rad}{s^2}

4 0
3 years ago
Other questions:
  • What are nasa's four great observatories and in what parts of the electromagnetic spectrum do they observe?
    5·2 answers
  • the lenses in a students eyes have arefractive power of 52. 0 diopters when she is able to focus on the board if the distance be
    7·1 answer
  • Figure 8-56 shows a solid, uniform cylinder of mass 7.00 kg and radius 0.450 m with a light string wrapped around it. A 3.00-N t
    7·1 answer
  • Seeing how strong our gravitational pull is here on Earth, would it be possible to kill someone if you drop a penny off the Empi
    6·1 answer
  • A car is moving with a constant velocity of 25 m/s. Which of the following is true?
    10·1 answer
  • A kilometer is a measure of an object’s
    13·1 answer
  • What is the difference between potential and kinetic types of energy? 1 pois​
    12·2 answers
  • The two sleds shown below are about to collide. If they stick together in the collision, what will happen after the collision? (
    14·1 answer
  • A poker is a long thin tool used to move pieces of coal or logs burning in a fire. To be as safe as possible, the poker should b
    8·1 answer
  • 1.2 Define the following terms and in each case give the symbol and the unit: 1.2.1 wavelength (4) ·​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!