1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
4 years ago
6

Please this is my senior work I’m trying to pass so help please What is Hooke’s Law

Physics
1 answer:
3241004551 [841]4 years ago
7 0

Answer:

It is a law of mechanics and physics discovered by Robert Hooke. This theory of elasticity says the extension of a spring is proportional to the load applied to it. Many materials obey this law as long as the load does not exceed the material's elastic limit.

Explanation:

You might be interested in
Consider what happens when you jump up in the air. which of the following is the most accurate statement?
slega [8]
 1.It is the upward force exerted by the ground that pushes you up, but this force can never exceed your weight.

2) You are able to spring up because the earth exerts a force upward on you that is stronger than the downward force you exert on the earth.

3) When you push down on the earth with a force greater than your weight, the earth will push back with the same magnitude force and thus propel you into the air.

4) When you jump up the earth exerts a force F1 on you and you exert a force F2 on the earth. You go up because F1 > F2.

<span>5) Since the ground is stationary, it cannot exert the upward force necessary to propel you into the air. Instead, it is the internal forces of your muscles acting on your body itself that propels the body into the air.</span>
6 0
4 years ago
What is the volume of an object that has a density of 65g/cm3 and a mass of 130g.
lora16 [44]

Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or

<em>ρ</em> = <em>m</em> / <em>v</em>

Solving for <em>v</em> gives

<em>v</em> = <em>m</em> / <em>ρ</em>

So the given object has a volume of

<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³

5 0
3 years ago
Blocks A (mass 2.00 kg) and B (mass 6.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block
Oksana_A [137]

Answer:

av=0.333m/s, U=3.3466J

b.

v_{A2}=-1.333m/s,\\ v_{B2}=0.667m/s

Explanation:

a. let m_A be the mass of block A, andm_B=10.0kg be the mass of block B. The initial velocity of A,\rightarrow v_A_1=2.0m/s

-The initial momentum =Final momentum since there's no external net forces.

pA_1+pB_1=pA_2+pB_2\\\\P=mv\\\\\therefore m_Av_A_1+m_Bv_B_1=m_Av_{A2}+m_Bv_{B2}

Relative velocity before and after collision have the same magnitude but opposite direction (for elastic collisions):

v_A_1-v_B_1=v_{B2}-v_{A2}

-Applying the conservation of momentum. The blocks have the same velocity after collision:

v_{B2}=v_{A2}=v_2\\\\2\times 2+10\times 0=2v_2+10v_2\\\\v_2=0.3333m/s

#Total Mechanical energy before and after the elastic collision is equal:

K_1+U_{el,1}=K_2+U_{el,2}\\\\#Springs \ in \ equilibrium \ before \ collision\\\\U_{el,2}=K_1-K_2=0.5m_Av_A_1^2-0.5(m_A+m_B)v_2^2\\\\U_{el,2}=0.5\times 2\times 2^2-0.5(2+10)(0.333)^2\\\\U_{el,2}=3.3466J

Hence, the maxumim energy stored is U=3.3466J, and the velocity=0.333m/s

b. Taking the end collision:

From a above, m_A=2.0kg, m_B=10kg, v_A=2.0,v_B_1=0

We plug these values in the equation:

m_Av_A_1+m_Bv_B_1=m_Av_{A2}+m_Bv_{B2}

2\times2+10\times0=2v_A_2+10v_B_2\\\\2=v_A_2+5v_B_2\\\\#Eqtn 2:\\v_A_1-v_B_1=v_{B2}-v_{A2}\\\\2-0=v_{B2}-v_{A2}\\\\2=v_{B2}-v_{A2}\\\\#Solve \ to \ eliminate \ v_{A2}\\\\6v_{B2}=2.0\\\\v_{B2}==0.667m/s\\\\#Substitute \ to \ get \ v_{A2}\\\\v_{A2}=\frac{4}{6}-2=1.333m/s

7 0
4 years ago
Determine the moment of inertia Ixx of the mallet about the x-axis. The density of the wooden handle is 860 kg/m3 and that of th
Yuki888 [10]

Complete Question

Diagram for this  shown on the first uploaded image

Answer:

The moment of inertia Ixx of the mallet about the x-axis is I{xx}= 0.119 kg \cdot m^2

Explanation:

From the question we are told that

        The density `of wooden handle is  \rho_w = 860 kg/m^3

        The density `of soft-metal head  is \rho_s =8000kg/m^3

Generally the mass of the wooden can be mathematically obtained with this formula

          m_w = \rho_w A_w l_w

Where A_w is mass of wooden handle which is  mathematically obtain with the formula

             A_w = \frac{\pi}{4} d^2_w

Where d_w is the diameter  of the wooden handle which from the diagram is

       27mm = \frac{27}{1000} = 0.027m

So  A_w = \frac{\pi}{4} * 0.027^2

      l_w is the length of the the wooden handle which is given in the diagram as   l_w = 315mm = \frac{315}{1000} = 0.315m

Substituting these value into the formula for mass

      m_w = 860 * (\frac{\pi}{4} * 0.027^2 ) *0.315

            = 0.155kg

Generally the mass of the soft-metal head can be mathematically obtained with this formula

           m_s = \rho_s A_s l_s

Where A_s is mass of soft-metal head which is  mathematically obtain with the formula

            A_s = \frac{\pi}{4} d^2_s

Where d_s is the diameter  of the soft-metal head which from the diagram is            

       36mm = \frac{36}{1000} = 0.036m

So  A_s = \frac{\pi}{4} * 0.036^2

 l_s is the length of the the soft-metal head which is given in the diagram

     as   l_s = 90mm = \frac{90}{1000} = 0.090m

Substituting these value into the formula for mass  

                  m_s = 8000 * (\frac{\pi}{4} * 0.036^2 ) *0.090

                       =0.733kg

Generally the mass moment of inertia about x-axis for the wooden handle is

                  (I_{xx})_w  =    [\frac{1}{3}m_w + l_w^2 ]  

Substituting values

                   (I_{xx})_w  =    [\frac{1}{3}*0.155 + 0.315^2 ]

                              =5.12*10^{-3}kg \cdot m^2  

Generally the mass moment of inertia about x-axis for the soft-metal head is

    (I_{xx})_s = [\frac{1}{12}m_s l_s ^2 + b^2]

Where b is the distance from the centroid to the axis of the head which is mathematically given as

                   b=l_w +\frac{d_s}{2}

Substituting values

                 b = 0.315 + \frac{0.036}{2}

                    = 0.336m

Now substituting values into the formula for mass moment of inertia about x-axis for soft-metal head

                            (I_{xx})_s = [\frac{1}{12} *0.733*  0.090^2 + 0.336^2]

                                      =0.113 kg \cdot m^2

Generally the mass moment of inertia about x-axis is mathematically represented as

         I_{xx} = (I_{xx})_w + (I_{xx})_s

                = [\frac{1}{3}m_w + l_w^2 ] + [\frac{1}{12}m_s l_s ^2 + b^2]

Substituting values

        I_{xx} = 5.12*10^{-3} +0.113

               I{xx}= 0.119 kg \cdot m^2

             

             

8 0
3 years ago
At divergent boundaries, hot mantle rock rises and<br> occurs.
andrey2020 [161]
The answer is decompression melting
5 0
3 years ago
Other questions:
  • A 150 kg uniform beam is attached to a vertical wall at one end and is supported by a vertical cable at the other end. Calculate
    6·1 answer
  • Robin would like to shoot an orange in a tree with his bow and arrow. The orange is hanging yf=5.00 m above the ground. On his f
    13·1 answer
  • When did erwin schrodinger make his discovery
    8·1 answer
  • How much work can be done per second by a one horsepower engine? 275 ft.-lbs./sec 550 ft.-lbs./sec 1,100 ft.-lbs./sec 1,650 ft.-
    15·1 answer
  • Water that soaks into Earth may become _____ under the surface.
    8·2 answers
  • The four balls in the diagram below are made of the same material are sold
    12·1 answer
  • A student presses her palm by her thumb with a force of 75 N . What would be the pressure under her thumb having contact area is
    13·1 answer
  • Convert: 77.0 cm = m
    7·1 answer
  • Q Explain the following terms.<br> a) A source of electric current<br> b) Electrical appliances
    14·1 answer
  • The speed that a tsunami can travel is modeled by the equation , where s is the speed in kilometers per hour and d is the averag
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!