Answer:
12408 feet per minute
Explanation:
Given: Speed is 141 mi/h
To find: speed in units of feet per minute
Solution:
Use the following units to convert the given speed into feet per minute.
1 mile = 5280 foot
1 h = 60 minutes
Therefore,
141 mi/h
feet per minute.
5 it very easy it's 2.5 x 10 3 power
Answer:
frequency = 8.22 x 10¹⁴ s⁻¹
Explanation:
An electron's positional potential energy while in a given principle quantum energy level is given by Eₙ = - A/n² and A = constant = 2.18 x 10⁻¹⁸j. So to remove an electron from the valence level of Boron (₅B), energy need be added to promote the electron from n = 2 to n = ∞. That is, ΔE(ionization) = E(n=∞) - E(n=2) = (-A/(∞)²) - (-A/(2)²) = [2.18 x 10⁻¹⁸j/4] joules = 5.45 x 10⁻¹⁹ joules.
The frequency (f) of the wave ionization energy can then be determined from the expression ΔE(izn) = h·f; h = Planck's Constant = 6.63 x 10⁻³⁴j·s. That is:
ΔE(izn) = h·f => f = ΔE(izn)/h = 5.45 x 10⁻¹⁹ j/6.63 x 10⁻³⁴ j·s = 8.22 x 10¹⁴ s⁻¹
Explanation:
RAM={mass number ×relative abundance (%) + mass number ×relative abundance (%)} ÷100%
so take (91.05×20) +(8.95×22)
Answer:
The correct option is OA.
C2H4O2 + NaHCO3 - NaC2H302 + H2O + CO2
Explanation:
To solve this you have to check the number of elements in both sides of the equation.