Explanation:
To determine the charge on a given transition metal atom, you have to consider what element it is, the charges on the other atoms in the molecule, and the net charge on the molecule itself. The charges are always whole numbers, and the sum of all the atomic charges equals the charge on the molecule
O B. The total mass of the reactants equals the total mass of the
products.
Answer is: excess of hydrazine is 16 grams.
Chemical reaction: N₂O₄(l) + 2N₂H₄(l) → 3N₂(g) + 4H₂<span>O(g).
</span>m(N₂H₄) = 80,1 g.
m(N₂O₄) = 92,0 g.
n(N₂H₄) = m(N₂H₄) ÷ M(N₂H₄).
n(N₂H₄) = 80,1 g ÷ 32 g/mol.
n(N₂H₄) = 2,5 mol.
n(N₂O₄) = 92 g ÷ 92 g/mol.
n(N₂O₄) = 1 mol; limiting reactant.
From chemical reaction: n(N₂H₄) : n(N₂O₄) = 2 : 1.
n(N₂H₄) = 2 mol reacts.
Δn(N₂H₄) = 2,5 mol - 2 mol = 0,5 mol.
Δm(N₂H₄) = 0,5 mol · 32 g/mol = 16 g.
The answer for the following problem is described below.
<em><u> Therefore the standard enthalpy of combustion is -2800 kJ</u></em>
Explanation:
Given:
enthalpy of combustion of glucose(Δ
of
) =-1275.0
enthalpy of combustion of oxygen(Δ
of
) = zero
enthalpy of combustion of carbon dioxide(Δ
of
) = -393.5
enthalpy of combustion of water(Δ
of
) = -285.8
To solve :
standard enthalpy of combustion
We know;
Δ
= ∈Δ
(products) - ∈Δ
(reactants)
(s) +6
(g) → 6
(g)+ 6
(l)
Δ
= [6 (-393.5) + 6(-285.8)] - [6 (0) + (-1275)]
Δ
= [6 (-393.5) + 6(-285.8)] - [0 - 1275]
Δ
= 6 (-393.5) + 6(-285.8) - 0 + 1275
Δ
= -2361 - 1714 - 0 + 1275
Δ
=-2800 kJ
<em><u> Therefore the standard enthalpy of combustion is -2800 kJ</u></em>