Answer:
since your adding to hours each time youll have 11, then the answer would be d the last one :)
Step-by-step explanation:
Number of weekend minutes used: x
Number of weekday minutes used: y
This month Nick was billed for 643 minutes:
(1) x+y=643
The charge for these minutes was $35.44
Telephone company charges $0.04 per minute for weekend calls (x)
and $0.08 per minute for calls made on weekdays (y)
(2) 0.04x+0.08y=35.44
We have a system of 2 equations and 2 unkowns:
(1) x+y=643
(2) 0.04x+0.08y=35.44
Using the method of substitution
Isolating x from the first equation:
(1) x+y-y=643-y
(3) x=643-y
Replacing x by 643-y in the second equation
(2) 0.04x+0.08y=35.44
0.04(643-y)+0.08y=35.44
25.72-0.04y+0.08y=35.44
0.04y+25.72=35.44
Solving for y:
0.04y+25.72-25.72=35.44-25.72
0.04y=9.72
Dividing both sides of the equation by 0.04:
0.04y/0.04=9.72/0.04
y=243
Replacing y by 243 in the equation (3)
(3) x=643-y
x=643-243
x=400
Answers:
The number of weekends minutes used was 400
The number of weekdays minutes used was 243
The answer would be a trapezoid.
0.018 will be 18/1000 = 9/500
Answer:
44x +56y = 95
Step-by-step explanation:
To write the equation of the perpendicular bisector, we need to know the midpoint and we need to know the differences of the coordinates.
The midpoint is the average of the coordinate values:
((-2.5, -2) +(3, 5))/2 = (0.5, 3)/2 = (0.25, 1.5) = (h, k)
The differences of the coordinates are ...
(3, 5) -(-2.5, -2) = (3 -(-2.5), 5 -(-2)) = (5.5, 7) = (Δx, Δy)
Then the perpendicular bisector equation can be written ...
Δx(x -h) +Δy(y -k) = 0
5.5(x -0.25) +7(y -1.5) = 0
5.5x -1.375 +7y -10.5 = 0
Multiplying by 8 and subtracting the constant, we get ...
44x +56y = 95 . . . . equation of the perpendicular bisector