Answer:
V=14
Explanation:
PE=KE
mgh=1/2mv^2
2(9.8)10=1/2(2)v^2
(radical) 196= (radical)v
V=14
The tension in the cable is 169.43 N and the vertical component of the force exerted by the hi.nge on the beam is 114.77 N.
<h3>Tension in the cable</h3>
Apply the principle of moment and calculate the tension in the cable;
Clockwise torque = TL sinθ
Anticlockwise torque = ¹/₂WL
TL sinθ = ¹/₂WL
T sinθ = ¹/₂W
T = (W)/(2 sinθ)
T = (29 x 9.8)/(2 x sin57)
T = 169.43 N
<h3>Vertical component of the force</h3>
T + F = W
F = W - T
F = (9.8 x 29) - 169.43
F = 114.77 N
Thus, the tension in the cable is 169.43 N and the vertical component of the force exerted by the hi.nge on the beam is 114.77 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
Answer:
d. The hammer falls with a constant acceleration
Explanation:
Since gravity is the only thing that is acting on the hammer as it falls and gravity is a form of acceleration then acceleration of 9.81m/s² which is gravity is the correct answer.
The answer is the letter ( d )
The work that is done when twice the load is lifted twice the distance is
four times as much
The net work performed by forces acting on an object equals the change in kinetic energy, according to the work-energy theorem.
when an item slows down, the net work applied to it decreases, its change in kinetic energy is negative, and its ultimate kinetic energy is less than its starting kinetic energy. When an item accelerates, positive net work is done on it. All the forces acting on an item must be taken into consideration when determining the net work. You will obtain an incorrect result if you exclude any forces that affect an item or if you add any forces that do not affect it.
Hence The work that is done when twice the load is lifted twice the distance is four times as much
Learn more about Work here
brainly.com/question/25573309
#SPJ4