Answer:
Explanation:
90 rpm = 90 / 60 rps
= 1.5 rps
= 1.5 x 2π rad /s
angular velocity of flywheel
ω = 3π rad /s
Let I be the moment of inertia of flywheel
kinetic energy = (1/2) I ω²
(1/2) I ω² = 10⁷ J
I = 2 x 10⁷ / ω²
=2 x 10⁷ / (3π)²
= 2.2538 x 10⁵ kg m²
Let radius of wheel be R
I = 1/2 M R² , M is mass of flywheel
= 1/2 πR² x t x d x R² , t is thickness , d is density of wheel .
1/2 πR⁴ x t x d = 2.2538 x 10⁵
R⁴ = 2 x 2.2538 x 10⁵ / πt d
= 4.5076 x 10⁵ / 3.14 x .1 x 7800
= 184
R= 3.683 m .
diameter = 7.366 m .
b ) centripetal accn required
= ω² R
= 9π² x 3.683
= 326.816 m /s²
D. They are heterotrophs that digest food internally.
Answer:
1700 Joules
Explanation:
Work=force x distance
Force = 170 kg
Distance= 10 Meters
170 x 10 = 1700 Joules of work
Given:
Area of pool = 3m×4m
Diameter of orifice = 0.076m
Outlet Velocity = 6.3m/s
Accumulation velocity = 1.5cm/min
Required:
Inlet flowrate
Solution:
The problem can be solved by this general formula.
Accumulation = Inlet flowrate - Outlet flowrate
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
First, we need to convert the units of the accumulation velocity into m/s to be consistent.
Accumulation velocity = 1.5cm/min × (1min/60s)×(1m/100cm)
Accumulation velocity = 0.00025 m/s
We then calculate the area of the pool and the area of the orifice by:
Area of pool = 3 × 4 m²
Area of pool = 12m²
Area of orifice = πd²/4 = π(0.076m)²/4
Area of orifice = 0.00454m²
Since we have all we need, we plug in the values to the general equation earlier
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
0.00025 m/s × 12m² = Inlet flowrate - 6.3m/s × 0.00454m²
Transposing terms,
Inlet flowrate = 0.316 m³/s
Red shirt appears red because:
a. The shirt reflects red light