For 1000 seconds , a current of 0.1 A flows so as to transfer charge of 100C
Answer:
v = 27 m/s
Explanation:
To find the speed of cars after the collision you take into account the momentum conservation law. Total momentum of both cars before the collision must be equal to the total momentum of both cars after the collision.
After the collision both cars traveled together, then you have:
(1)
m1: mass of the Toyota = 3-ton = 3000 kg
m2: mass of the taxi = 2-ton = 2000kg
v1: speed of the Toyota before the collision = 45m/s
v2: speed of the car before the collision = 0 m/s (it is at rest)
v: speed of both cars after the collision = ?
You solve the equation (1) for v:

Next, you replace the values of the rest of the variables:

hence, just after the collision both cars have a speed of 27m/s
It would appear Red because as stated above, the paper reflects all the colors of light that fall on it.
-- material and thickness of the interconnecting wires;
-- number, type, and configuration of all the devices
between the in- and out-terminals of the circuit ...
the points that connect to the battery;
-- quality of the connections at the points where
circuit devices connect to wires or to each other.
Answer:
(A). The electric field strength inside the solenoid at a point on the axis is zero.
(B). The electric field strength inside the solenoid at a point 1.50 cm from the axis is
.
Explanation:
Given that,
Magnetic field = 2.0 T
Diameter = 5.0 cm
Rate of decreasing in magnetic field = 5.00 T/s
(A). We need to calculate the electric field strength inside the solenoid at a point on the axis
Using formula of electric field inside the solenoid

Electric field on the axis of the solenoid
Here, r = 0


The electric field strength inside the solenoid at a point on the axis is zero.
(B). We need to calculate the electric field strength inside the solenoid at a point 1.50 cm from the axis
Using formula of electric field inside the solenoid



Hence, (A). The electric field strength inside the solenoid at a point on the axis is zero.
(B). The electric field strength inside the solenoid at a point 1.50 cm from the axis is
.