1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
5

A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 ° to the horizon at a speed of 50.0 m/s. At the highest poin

t in its flight, the projectile breaks into three parts of mass 1.0 kg, 0.7 kg, and 0.3 kg. The 1.0-kg part falls straight down after breakup with an initial speed of 10.0 m/s, the 0.7-kg part moves in the original forward direction, and the 0.3-kg part goes straight up.(a) Find the speeds of the 0.3-kg and 0.7-kg pieces immediately after the break-up.(b) How high from the break-up point does the 0.3-kg piece go before coming to rest
Physics
1 answer:
tekilochka [14]3 years ago
8 0

Answer:

a) The fragment speeds of 0.3 kg is 33.3 m / s on the y axis

                                         0.7 kg is 109.4 ms on the x axis

b)  Y = 109.3 m

Explanation:

This is a moment and projectile launch exercise.

a) Let's start by finding the initial velocity of the projectile

       sin 40 = voy / v₀

       v_{oy} = v₀ sin 40

       v_{oy} = 50.0 sin40

       v_{oy} = 32.14 m / s

       cos 40 = v₀ₓ / V₀

       v₀ₓ = v₀ cos 40

       v₀ₓ = 50.0 cos 40

       v₀ₓ = 38.3 m / s

Let us define the system as the projectile formed t all fragments, for this system the moment is conserved in each axis

Let's write the amounts

Initial mass of the projectile M = 2.0 kg

Fragment mass 1 m₁ = 1.0 kg and its velocity is vₓ = 0 and v_{y} = -10.0 m / s

Fragment mass 2 m₂ = 0.7 kg moves in the x direction

Fragment mass 3 m₃ = 0.3 kg moves up (y axis)

Moment before the break

X axis

     p₀ₓ = m v₀ₓ

Y Axis y

    p_{oy} = 0

After the break

X axis

   p_{fx} = m₂ v₂

Axis y

     p_{fy} = m₁ v₁ + m₃ v₃

Let's write the conservation of the moment and calculate

Y Axis  

     0 = m₁ v₁ + m₃ v₃

Let's clear the speed of fragment 3

     v₃ = - m₁ v₁ / m₃

     v₃ = - (-10) 1 / 0.3

     v₃ = 33.3 m / s

X axis

     M v₀ₓ = m₂ v₂

     v₂ = v₀ₓ M / m₂

     v₂ = 38.3  2 / 0.7

     v₂ = 109.4 m / s

The fragment speeds of 0.3 kg is 33.3 m / s on the y axis

                                         0.7 kg is 109.4 ms on the x axis

b) The speed of the fragment is 33.3 m / s and has a starting height of where the fragmentation occurred, let's calculate with kinematics

       v_{fy}² = v_{oy}² - 2 gy

       0 =  v_{oy}²-2gy

       y =  v_{oy}² / 2g

       y = 32.14² / 2 9.8

       y = 52.7 m

This is the height where the break occurs, which is the initial height for body movement of 0.3 kg

      v_{f}² =  v_{y}² - 2 g y₂

      0 =  v_{y}² - 2 g y₂

     y₂ =  v_{y}² / 2g

     y₂ = 33.3²/2 9.8

     y₂ = 56.58 m

Total body height is

      Y = y + y₂

      Y = 52.7 + 56.58

     Y = 109.3 m

You might be interested in
Anyone who is willing to help me do some 8th grade science questions<br>NO LINKS
NISA [10]

Answer:

what are they ill have a look

Explanation:

3 0
3 years ago
Which formula correctly shows how to calculat the time taken, given the average velocity and the displacement
Alisiya [41]
We're so good here on Brainly, we can answer it
even WITHOUT seeing the choices.

     Time = (displacement) / (magnitude of average velocity) .
8 0
3 years ago
How deep is the outer core beneath the surface
sukhopar [10]
Precisely around 1,800 miles below.
6 0
3 years ago
Three masses are located in the x- y plane as follows: a mass of 6 kg is at (0 m, 0 m), a mass of 4 kg is at (3 m, 0 m), and a m
enot [183]

Answer:

The center of mass of three mass in the x-y plane is located at (1,0.5).                  

Explanation:

It is given that, a mass of 6 kg is at (0,0), a mass of 4 kg is at (3,0), and a mass of 2 kg is at (0,3). We need to find the center of mass of the system. Center of mass in x direction  is :

C_x=\dfrac{6\times 0+4\times 3+2\times 0}{6+4+2}\\\\C_x=1

The center of mass in y direction is :

C_y=\dfrac{6\times 0+4\times 0+2\times 3}{6+4+2}\\\\C_y=0.5

So, the center of mass of three mass in the x-y plane is located at (1,0.5).

3 0
3 years ago
The amount of friction divided by the weight of an object forms a unit less number called the
Romashka [77]

Answer:

Coefficient of friction.

Explanation:

The amount of friction divided by the weight of an object is equal to the coefficient of friction. It is a dimensional less number. It can be given by :

F=\mu N

N is normal force.

\mu = coefficient of friction

\mu=\dfrac{F}{N}

3 0
3 years ago
Other questions:
  • PLZZZZ HELP!!!
    11·1 answer
  • Two cars, A and B , travel in a straight line. The distance of A from the starting point is given as a function of time by xA(t)
    6·1 answer
  • Why can you not put diesel in a regular car?
    6·2 answers
  • A star has a declination of approximately 45°. Which of these statements is correct about the star?
    8·1 answer
  • Calculate the average (mean) of these numbers: 6, 5, 7, 9.8*
    15·1 answer
  • The unit of area is derived unit why​
    6·2 answers
  • Two spheres A and B are projected off the edge of a 1.0 m high table with the same horizontal velocity . sphere A has a mass of
    11·1 answer
  • 3. A Tylenol has 80 mg of acetaminophen.<br> How many grams is that
    8·1 answer
  • Obtaine the resultant of the forces 20N-40N ​
    15·1 answer
  • Create your own simple metaphor illustrating how demand and supply work together to create equilibrium. Label the following on y
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!