I dont know what the statements are but concave lens are thinner in the middle which cause light to diverge or scatter
Answer:
The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
Given that,
Horizontal velocity = 1.4 m/s
Height = 1.8 m
We need to calculate the minimum speed must she leave the ground
Using conservation of energy



Put the value into the formula




Hence, The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
the force acting perpendicularly on unit area of surface
- unit=pascle .
Answer:
Two times as much
Explanation:
The equation for gravitational force is: Fg = GMm/r^2 with G being the universal gravitational constant.
So to make things easier we'll set r equal to 1 since it's a constant as well as G.
Then we're left with Fg=Mm with M being the mass of the sun and m being the mass of the earth.
So if m is constant and supposedly equals 1 then Fg=M so Fg is proportional to M therefore if M doubles then Fg doubles.
Answer: 80m
Explanation:
Distance of balloon to the ground is 3150m
Let the distance of Menin's pocket to the ground be x
Let the distance between Menin's pocket to the balloon be y
Hence, x=3150-y------1
Using the equation of motion,
V^2= U^s + 2gs--------2
U= initial speed is 0m/s
g is replaced with a since the acceleration is under gravity (g) and not straight line (a), hence g is taken as 10m/s
40m/s is contant since U (the coin is at rest is 0) hence V =40m/s
Slotting our values into equation 2
40^2= 0^2 + 2 * 10* (3150-y)
1600 = 0 + 63000 - 20y
1600 - 63000 = - 20y
-61400 = - 20y minus cancel out minus on both sides of the equation
61400 = 20y
Hence y = 61400/20
3070m
Hence, recall equation 1
x = 3150 - 3070
80m
I hope this solve the problem.