In terms of the scientific method, the immediate purpose of doing an experiment is gathering data. You cannot draw conclusions or form a proper hypothesis without some sort of basis and data.
Its C because if it is a low frequency it will not change much so it will be a longer wavelength and the higher the frequency the shorter the wavelength
Answer: 154.08 m/s
Explanation:
Average acceleration
is the variation of velocity
over a specified period of time
:

Where:

being
the initial velocity and
the final velocity

Then:

Since
:

Finding
:


Finally:

Answer:
due to the inertia of motion, the fan continues to move for some time even after switching it off.
Answer:
The answer is below
Explanation:
The length of the rope is equal to the radius of the circle formed by the complete rotation of the rope. Therefore the radius = 1.50 m.
a) The distance covered by the rope when completing one rotation is the same as the perimeter of the circle. Hence:
Distance covered in one rotation = 2π * radius = 2π * 1.5 = 3π meters
The velocity of the ball = Distance / time = 3π meters / 3.4 seconds = 2.77 m/s
b) The initial velocity (u) is 0 m/s, the final velocity is 2.77 m/s during time (t) = 3.4 s. Hence acceleration (a):
v = u + at
2.77 = 3.4a
a = 0.82 m/s²
c) Force on ball = mass * acceleration = 4 * 0.82 = 3.28 N