Answer:
254
Explanation:
use the formula "final Velocity- initial velocity / time = acceleration"
so "X - 14 /4 = 60"
60 x 4 = X - 14
240 +14 = X
X = 254
Answer:
Force applied to stop the car = 1,250 N
Explanation:
Given:
Mass of car (M) = 1,000 kg
Initial velocity (U) = 20 m/s
Final velocity (V) = 0 m/s
Distance (S) = 160 m
Find:
Force applied to stop the car.
Computation:

Force applied to stop the car = 1,250 N
Responder: A.) 24.5m / s B.) 30.625m C.) 89.375m
Explicación:
Dado lo siguiente:
Altura desde la cual se cae el cuerpo = 120 m
Tiempo (t) = 2.5s
A.) La velocidad que toma:
El cuerpo cayó desde una altura;
velocidad inicial (u) = 0
Para calcular v:
V = u + en
Donde a = aceleración debido a la gravedad = 9.8m / s
v = 0 + (9.8) (2.5)
v = 24.5 m / s
B) Cuánto ha disminuido.
Usando la ecuación de movimiento:
S = ut + 0.5at ^ 2
Donde S = distancia
S = 0 × 2.5 + 0.5 (9.8) (2.5 ^ 2)
S = 0 + 0.5 (9.8) (6.25)
S = 30.625 m
Esta es la distancia recorrida después de 2.5 segundos Altura o distancia ha disminuido en 30.625 m
C.) ¿CUÁNTO FALTA? Por lo tanto, 120m - 30.625m = 89.375m
Answer:
k = 5178.8 N/m
Explanation:
As we know that spring mass system will oscillate at angular frequency given as

now we have

now the maximum acceleration of the spring block system is at its maximum compression state which is given as

here A= maximum compression of the spring
so here in order to find maximum compression of the spring we will use energy conservation as we know that initial total kinetic energy of the car will convert into spring potential energy

here we know that
v = 85 km/h

now we have


now from above equation of acceleration we have


