
9. An object which is in circular motion (moving along a circle) is said to be accelerating because it changes it's direction constantly even if it is moving with a constant speed. cuz acceleration is change in either magnitude or direction of an object with respect to time.
therefore, it's still acceleration as change in direction with time.
10. Average speed of an object can be calculated by dividing the total distance covered by an object by time taken to cover that distance.
i.e
it can be re- arranged to find the distance as :
11. speed = 20 m/s : conversion into km/h
distance covered : 4 km = 4000 m
time taken = 200 seconds
12. let's use the first equation of motion to find the acceleration :
Answer:
Explanation:
number of turns, N = 149
radius, r = 2.15 cm
Area, A = πr² = 3.14 x 2.15 x 2.15 x 10^-4 = 1.45 x 10^-3 m^2
Change in magnetic field, ΔB = 95.5 - 50.5 = 45 mT = 45 x 10^-3 T
time, Δt = 0.165 second
induced emf
e = N x dФ/dt
where, dФ be the change in flux.
e = N x A x ΔB/Δt
e = 149 x 1.45 x 10^-3 x 45 x 10^-3 / 0.165
e = 0.058 V
I had this question before I think was it A or B.
Answer: The correct answer is "Instrument A is placed closer to Sam than instrument B".
Explanation:
The sound can be soft or loud. Loudness depends on the amplitude of the sound wave. Higher the amplitude, more will be loudness. Lower the amplitude, lesser will be loudness.
Pitch depends on the frequency.
In the given problem, the instruments A and B generate sound waves of the same amplitude and at the same time.
Loudness depends on the sound energy produced as the energy of the sound is directly proportional to the square of the amplitude. It also depends on the distance between the source and the receiver.
Sam records a louder sound from instrument A than from instrument B. It means that there is mismatch in loudness. It can happen due to the placement of the instrument A closer to Sam than instrument B.
Therefore, the correct option is "Instrument A is placed closer to Sam than instrument B".