Answer:
Bananas go through a process called ‘negative geotropism’ so they can reach the sun
Answer:
μ =tanθ
Explanation:=
The ratio of the force of static friction and the normal reaction is equal to tanθ. F=mgsinθ. R = mgcosθ.
μ=tanθ
The solution for this problem:
Given:
f1 = 0.89 Hz
f2 = 0.63 Hz
Δm = m2 - m1 = 0.603 kg
The frequency of mass-spring oscillation is:
f = (1/2π)√(k/m)
k = m(2πf)²
Then we know that k is constant for both trials, we have:
k = k
m1(2πf1)² = m2(2πf2)²
m1 = m2(f2/f1)²
m1 = (m1+Δm)(f2/f1)²
m1 = Δm/((f1/f2)²-1)
m 1 = 0.603/
(0.89/0.63)^2 – 1
= 0.609 kg or 0.61kg or 610 g
Answer:
2000 kg
Explanation:
Given that Which will have a larger momentum when moving at the same speed: a 2,000-kg truck or a 1,000-kg sedan
According to the definition of momentum, momentum is the product of mass and velocity.
That is,
Momentum = mass × velocity
Since velocity or speed is the same, then, the one of higher mass will have a greater momentum.
Therefore, the 2000 kg truck will have the greater momentum.
Definition: Momentum = (mass) x (speed)
OK. Here we go.
Watch closely:
Divide each side
by 'mass' : <span>Momentum / mass = Speed </span>
Did you follow that ?