Answer:
Swap codes in line 7 and 8
Explanation:
The code segment below
Line 1: count ← 0
Line 2: sum ← 0
Line 3: FOR EACH value IN numbers
Line 4: {
Line 5: count ← count + 1
Line 6: sum ← sum + value
Line 7: average ← sum / count
Line 8: }
Line 9: DISPLAY (average)
The above code will make the program translator calculate the average value at each iteration.
This will take a longer time to execute and also means more instructions for the program translator.
Swapping line 7 and 8 will reduce the number of instructions to execute. This will have an instant effect on the time taken to execute the program.
Swapping line 7 and 8 means that, the program translator will only calculate the average after it must have finished calculating the sum of the values in the iteration statement.
I think it may be D but all of them sound pretty important to get the perfect photo. I tried researching and each website told me different.<span />
Answer:
A. true
Explanation:
<em><u>because</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>complete</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>without it</u></em><em><u> </u></em><em><u>mistakes</u></em><em><u> </u></em><em><u>if</u></em><em><u> </u></em><em><u>your</u></em><em><u> </u></em><em><u>using</u></em><em><u> </u></em><em><u>an</u></em><em><u> </u></em><em><u>computer</u></em><em><u> </u></em><em><u>but</u></em><em><u> </u></em><em><u>if</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>use</u></em><em><u> </u></em><em><u>an</u></em><em><u> </u></em><em><u>paper</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>make</u></em><em><u> </u></em><em><u>mistakes</u></em><em><u> </u></em><em><u>over</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>over</u></em>
Answer: E. Never
geometric average return can NEVER exceed the arithmetic average return for a given set of returns
Explanation:
The arithmetic average return is always higher than the other average return measure called the geometric average return. The arithmetic return ignores the compounding effect and order of returns and it is misleading when the investment returns are volatile.
Arithmetic returns are the everyday calculation of the average. You take the series of returns (in this case, annual figures), add them up, and then divide the total by the number of returns in the series. Geometric returns (also called compound returns) involve slightly more complicated maths.