Answer: all solutions
Step-by-step explanation:
all of the numbers cancel out
Answer:The claim is correct
Explanation:Assume the given triangle ABCperimeter of triangle ABC = AB + BC + CA ............> I
Now, we have:D is the midpoint of AB, this means that:
AD = DB = (1/2) AB ..........> 1E is the midpoint of AC, this means that:
AE = EC = (1/2) AC ...........> 2DE is the midsegment in triangle ABC, this means that:
DE = (1/2) BC ...........> 3perimeter of triangle ADE = AD + DE + EA
Substitute in this equation with the corresponding lengths in 1,2 and 3:perimeter of triangle ADE = (1/2) AB + (1/2) BC = (1/2) AC
perimeter of triangle ADE = (1/2)(AB+BC+AC) .........> IIFrom I and II, we can prove that:perimeter of triangle ADE = (1/2) perimeter of triangle ABC
Which means that:perimeter of midsegment triangle is half the perimeter of the original triangle.
Hope this helps :)
Answer:
GURL MY MATH TEACHER GAVE ME THE SAME SHEET A MONTH AGOO
YASS
1.) x is less than or equal to 3
2.) x greater than or equal to 2
3.) x < -1
4.) x greater than or equal to 3
5.) x>2
6.) x greater than or equal to 1