Answer:
$121.95
Step-by-step explanation:
First, we need to change 45% into a decimal. To do that, move the decimal point two spaces back, and we will have 0.45.
Multiply that by the original price $84.10
$84.10 x 0.45 = 37.845
Then add 84.10 with 37.845
This adds up to $121.945, which you can round to $121.95
ANSWER
The 4th term is -27
EXPLANATION
The sum of the first n-terms of an arithmetic sequence is

It was given that,








The n-term is given by:

We substitute n=4 to get,




Answer: The answer is 20x + 35
Step-by-step explanation: 5(4x+7) You multiply 5 in both numbers and you get 20x+35
Answer:
(A)Cost of Rental A, C= 15h
Cost of Rental B, C=5h+50
Cost of Rental C, C=9h+20
(B)
i. Rental C
ii. Rental A
iii. Rental B
Step-by-step explanation:
Let h be the number of hours for which the barbeque will be rented.
Rental A: $15/h
Rental B: $5/h + 50
- Cost of Rental B, C=5h+50
Rental C: $9/h + 20
- Cost of Rental C, C=9h+20
The graph of the three models is attached below
(b)11.05-4.30
When you keep the barbecue from 11.05 to 4.30 when the football match ends.
Number of Hours = 4.30 -11.05 =4 hours 25 Minutes = 4.42 Hours
-
Cost of Rental A, C= 15h=15(4.42)=$66.30
- Cost of Rental B, C=5h+50 =5(4.42)+50=$72.10
- Cost of Rental C, C=9h+20=9(4.42)+20=$59.78
Rental C should be chosen as it offers the lowest cost.
(c)11.05-12.30
Number of Hours = 12.30 -11.05 =1 hour 25 Minutes = 1.42 Hours
- Cost of Rental A, C= 15h=15(1.42)=$21.30
- Cost of Rental B, C=5h+50 =5(4.42)+50=$57.10
- Cost of Rental C, C=9h+20=9(4.42)+20=$32.78
Rental A should be chosen as it offers the lowest cost.
(d)If the barbecue is returned the next day, say after 24 hours
- Cost of Rental A, C= 15h=15(24)=$360
- Cost of Rental B, C=5h+50 =5(24)+50=$170
- Cost of Rental C, C=9h+20=9(24)+20=$236
Rental B should be chosen as it offers the lowest cost.
Okay so the second one seems correct BUT don’t take my work for it :|