Answer:
10 ft 10 in
Step-by-step explanation:
Note that there are 12 inch in 1 feet. Add corresponding numbers together:
6 ft 2 in + 4 ft 8 in = (6 ft + 4 ft) + (2 in + 8 in) = 10 ft + 10 in
10 ft 10 in is your answer.
~
Answer:
Below!
Step-by-step explanation:
Using Pythagoras theorem, I will solve all of the problems.
<h3>________________________________________________</h3>
<u>Question 9:</u>
- 10² = 6² + x²
- => 100 = 36 + x²
- => 100 - 36 = x²
- => 64 = x²
- => x = 8
<h3>________________________________________________</h3>
<u>Question 10:</u>
- 26² = 24² + x²
- => 676 = 576 + x²
- => 676 - 576 = x²
- => 100 = x²
- => x = 10
<h3>________________________________________________</h3>
<u>Question 11:</u>
- 15² = 12² + x²
- => 225 = 144 + x²
- => 225 - 144 = x²
- => 81 = x²
- => x = 9
<h3>________________________________________________</h3>
<u>Question 12:</u>
- x² = 8² + 12²
- => x² = 64 + 144
- => x² = 208
- => x = √208
- => x = 14.2 (Rounded)
<h3>________________________________________________</h3>
<u>Question 13:</u>
- 7² = 2² + x²
- => 49 = 4 + x²
- => 49 - 4 = x²
- => 45 = x²
- => x = √45
- => x = 6.7 (Rounded)
<h3>________________________________________________</h3>
<u>Question 14</u>
First, let's solve for the variable x using Pythagoras theorem.
- => 5² = 3² + x²
- => 25 = 9 + x²
- => 16 = x²
- => x = 4 units
Now, let's solve for the variable y using Pythagoras theorem.
- (3 + 6)² = 5² + y²
- => (9)² = 25 + y²
- => 81 = 25 + y²
- => y² = 56
- => y = √56
- => y = 7.5 (Rounded) units
Answers (Nearest tenth):
<h3>________________________________________________</h3>
<u>Question 15:</u>
First, let's find the value of the variable y using Pythagoras theorem.
- 8² = 6² + y²
- => 64 = 36 + y²
- => 28 = y²
- => y = √28
- => y = 5.3 (Rounded) units
Now, let's find the value of the variable x using multiplication.
- x = 2y
- => x = 2(5.3)
- => x = 10.6 units
Answer (Nearest tenth)
- x = 10.6 units
- y = 5.3 units
<h3>________________________________________________</h3>
Y=-3x+4
Gradient, m= -3
Parallel lines have equal gradients;
So, equation II,
y=mx+c
y=-3x+c
Replacing for x and y using point (-4, 6)
6=-3(-4)+c
6=12+c
6-12=c
c=-6
y=-3x-6