1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astraxan [27]
3 years ago
13

Plz help me it is improtant

Physics
1 answer:
marishachu [46]3 years ago
7 0
I think it is b cause I don’t think you do that
You might be interested in
The tangent line needs to touch 0.6, did i draw it correctly? ​
AleksandrR [38]
Here you go! Did you get my answer?
8 0
3 years ago
Read 2 more answers
A 50 g copper calorimeter contains 250 g of water at 20 C. How much steam be condensed into the water to make the final temperat
Nostrana [21]

Answer:

Approximately 13\; \rm g of steam at 100\; \rm ^\circ C (assuming that the boiling point of water in this experiment is 100\; \rm ^\circ C\!.)

Explanation:

Latent heat of condensation/evaporation of water: 2260\; \rm J \cdot g^{-1}.

Both mass values in this question are given in grams. Hence, convert the specific heat values from this question to \rm J \cdot g^{-1}.

Specific heat of water: 4.2\; \rm J \cdot g^{-1}\cdot \rm K^{-1}.

Specific heat of copper: 0.39\; \rm J \cdot g^{-1}\cdot K^{-1}.

The temperature of this calorimeter and the 250\; \rm g of water that it initially contains increased from 20\; \rm ^\circ C to 50\; \rm ^\circ C. Calculate the amount of energy that would be absorbed:

\begin{aligned}& Q(\text{copper}) \\ =\;& c \cdot m \cdot \Delta t \\ =\;& 0.39\; \rm J \cdot g^{-1}\cdot K^{-1} \times 50\; \rm g \times (50\;{\rm ^\circ C} - 20\;{\rm ^\circ C}) \\ =\; & 585\; \rm J  \end{aligned}.

\begin{aligned}& Q(\text{cool water}) \\ =\;& c \cdot m \cdot \Delta t \\ =\;& 4.2\; \rm J \cdot g^{-1}\cdot K^{-1} \times 250\; \rm g \times (50\;{\rm ^\circ C} - 20\;{\rm ^\circ C}) \\ =\; & 31500\; \rm J  \end{aligned}.

Hence, it would take an extra 585\; \rm J + 31500\; \rm J = 32085\; \rm J of energy to increase the temperature of the calorimeter and the 250\; \rm g of water that it initially contains from 20\; \rm ^\circ C to 50\; \rm ^\circ C.

Assume that it would take x grams of steam at 100\; \rm ^\circ C ensure that the equilibrium temperature of the system is 50\; \rm ^\circ C.

In other words, x\; \rm g of steam at 100\; \rm ^\circ C would need to release 32085\; \rm J as it condenses (releases latent heat) and cools down to 50\; \rm ^\circ C.

Latent heat of condensation from x\; \rm g of steam: 2260\; {\rm J \cdot g^{-1}} \times (x\; {\rm g}) = (2260\, x)\; \rm J.

Energy released when that x\; {\rm g} of water from the steam cools down from 100\; \rm ^\circ C to 50\; \rm ^\circ C:

\begin{aligned}Q = \;& c \cdot m \cdot \Delta t \\ =\;& 4.2\; {\rm J \cdot g^{-1}\cdot K^{-1}} \times (x\; \rm g) \times (100\;{\rm ^\circ C} - 50\;{\rm ^\circ C}) \\ =\; & (210\, x)\; \rm J  \end{aligned}.

These two parts of energy should add up to 32085\; \rm J. That would be exactly what it would take to raise the temperature of the calorimeter and the water that it initially contains from 20\; \rm ^\circ C to 50\; \rm ^\circ C.

(2260\, x)\; {\rm J} + (210\, x)\; {\rm J} = 32085\; \rm J.

Solve for x:

x \approx 13.

Hence, it would take approximately 13\; \rm g of steam at 100\; \rm ^\circ C for the equilibrium temperature of the system to be 50\; \rm ^\circ C.

4 0
3 years ago
A 6 kg block is sliding down a horizontal frictionless surface with a constant speed of 5 m/s. It then slides down a frictionles
BARSIC [14]

Answer:

5in

Explanation:

4 0
4 years ago
Which type of circuit is shown?
ivann1987 [24]

Answer:

I think it's D. open series circuit .

Explanation:

<em>hope</em><em> it</em><em> helps</em><em> you</em><em>!</em>

7 0
3 years ago
A rocket weighs 9800N (opposing force) what is it mass? What netforce moves the rocket? What applied force gives it a vertical a
Slav-nsk [51]

For the first part of this question, consider that "weight" can be described as mass x acceleration of gravity. Weight is expressed in Newtons. To solve for mass in this case, simply divide 9800N by 9.8m/s^2 (Earth's gravitational acceleration). This will give you a mass of 1000 kg. This mass is moved due to the net force supplied by the normal force from the rocket "pushing" off of Earth.

For the second part, we will use the equation F = ma, which is Newton's second law. For this, we know the m, or mass, is 1000 kg. Also, we know the a, or acceleration, will be 4 m/s^2. To solve for force, we will multiply both of these values. This gives a force of 4000 N. I hope this clears things up!

6 0
3 years ago
Other questions:
  • Electric potential is measured in an SI unit called the ________.
    6·1 answer
  • What is the state of matter with definite volume?
    6·2 answers
  • 3 objects that have gravitational potential energy?
    5·2 answers
  • If sugar contains 41.86% carbon and 6.98% hydrogen what percentage of sugar is oxygen?
    14·1 answer
  • A piano tuner uses a tuner to create a tone of 5.00 x 10² Hz. When a key on the piano is struck he hears 5 beats per second. Wha
    15·1 answer
  • A 26.5-mW laser beam of diameter 1.88 mm is reflected at normal incidence by a perfectly reflecting mirror. Calculate the radiat
    7·1 answer
  • How are water bottles recycled?
    13·2 answers
  • Knowing that a ball traveled 16 feet in one second, how much will it travel in the first quarter second?
    15·2 answers
  • Which information about an atom can a period number give you?(1 point)
    10·1 answer
  • Please help<br><br>why does 45° produce a max. range?​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!