1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olin [163]
3 years ago
7

Use the method of dividing prime factors to find the greatest common factor of 16, 120, and 216.

Mathematics
1 answer:
lawyer [7]3 years ago
4 0
I hope this helps you

You might be interested in
Find Scott's monthly payment.
Mariana [72]
What’s the math problem?
5 0
3 years ago
Please help, The wording is throwing me off so badly.
sweet [91]

first off, let's recall that a cube is just 6 squares stacked up to each other, like in the picture below. Since we know its volume, we can find how long each side is.

part A)

\bf \textit{volume of a cube}\\\\V=x^3~~\begin{cases}x=side\\[-0.5em]\hrulefill\\V=64\end{cases}\implies 64=x^3\implies \sqrt[3]{64}=x\implies 4=x


part B)


they have a painting with an area of 12 ft², will the painting fit flat against a side? Well, it can only fit flat if the sides of the painting are the same length or smaller than the sides of the crate, we know the crate is a 4x4x4, so are the painting's sides 4 or less?


\bf \textit{area of a square}\\\\A=s^2~~\begin{cases}s=side\\[-0.5em]\hrulefill\\A=12\end{cases}\implies 12=s^2\implies \sqrt{12}=s\implies \stackrel{yes}{3.464\approx s}

7 0
4 years ago
According to the text, which element has the LEAST number of dimensions? A figure B tine C) plane D) point​
Anvisha [2.4K]

Point is the least number of dimensions

Im sure :)

8 0
3 years ago
Solve equations for this word problem
o-na [289]
Not enough information... how much area did the student paint in 8 hours?

3 0
3 years ago
If the integral of the product of x squared and e raised to the negative 4 times x power, dx equals the product of negative 1 ov
Nataly_w [17]

Answer:

A + B + E = 32

Step-by-step explanation:

Given

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Required

Find A +B + E

We have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Using integration by parts

\int {u} \, dv = uv - \int vdu

Where

u = x^2 and dv = e^{-4x}dx

Solve for du (differentiate u)

du = 2x\ dx

Solve for v (integrate dv)

v = -\frac{1}{4}e^{-4x}

So, we have:

\int {u} \, dv = uv - \int vdu

\int\limits {x^2\cdot e^{-4x}} \, dx  = x^2 *-\frac{1}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x} 2xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} - \int -\frac{1}{2}e^{-4x} xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

-----------------------------------------------------------------------

Solving

\int xe^{-4x} dx

Integration by parts

u = x ---- du = dx

dv = e^{-4x}dx ---------- v = -\frac{1}{4}e^{-4x}

So:

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} + \int e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}

So, we have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} [ -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}]

Open bracket

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} -\frac{x}{8}e^{-4x}  -\frac{1}{8}e^{-4x}

Factor out e^{-4x}

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{x^2}{4} -\frac{x}{8} -\frac{1}{8}]e^{-4x}

Rewrite as:

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{4}x^2 -\frac{1}{8}x -\frac{1}{8}]e^{-4x}

Recall that:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{64}Ax^2 -\frac{1}{64} Bx -\frac{1}{64} E]Ce^{-4x}

By comparison:

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

-\frac{1}{8}x = -\frac{1}{64}Bx

-\frac{1}{8} = -\frac{1}{64}E

Solve A, B and C

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

Divide by -x^2

\frac{1}{4} = \frac{1}{64}A

Multiply by 64

64 * \frac{1}{4} = A

A =16

-\frac{1}{8}x = -\frac{1}{64}Bx

Divide by -x

\frac{1}{8} = \frac{1}{64}B

Multiply by 64

64 * \frac{1}{8} = \frac{1}{64}B*64

B = 8

-\frac{1}{8} = -\frac{1}{64}E

Multiply by -64

-64 * -\frac{1}{8} = -\frac{1}{64}E * -64

E = 8

So:

A + B + E = 16 +8+8

A + B + E = 32

4 0
3 years ago
Other questions:
  • Sara reads 250 words per minute for 2 hours and gets tired and reads 125 words per minute for 3 hours. on average how many words
    13·1 answer
  • Your 401(k) retirement account is currently worth $55,000. Assuming no more contributions, what will your account be worth in 20
    8·1 answer
  • PLZ HELP NOW!!!!!!Which statements are true about the ordered pair (−4, 0) and the system of equations?
    9·1 answer
  • The sum of -1 7/8 and 1 11/12
    10·2 answers
  • Find the measure of the indicated aces and angles
    12·1 answer
  • Below is a graph of a parabola. What kind/how many solutions does it have?
    7·2 answers
  • Abdul flips a weighted coin 64 times and gets 16 tails. Based on experimental probability, how many of the next 40 flips should
    11·1 answer
  • (4 x 5) ( 4 x 9)<br> i need help
    14·2 answers
  • ....................
    13·2 answers
  • The sun of two numbers is 88 and their difference is 8 find the two numbers
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!