Answer:
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \frac{1}{8}*arctan(\frac{x^2}{4}) + c](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B1%7D%7B8%7D%2Aarctan%28%5Cfrac%7Bx%5E2%7D%7B4%7D%29%20%2B%20c)
Step-by-step explanation:
Given
![\int\limits {\frac{x}{x^4 + 16}} \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx)
Required
Solve
Let
![u = \frac{x^2}{4}](https://tex.z-dn.net/?f=u%20%3D%20%5Cfrac%7Bx%5E2%7D%7B4%7D)
Differentiate
![du = 2 * \frac{x^{2-1}}{4}\ dx](https://tex.z-dn.net/?f=du%20%3D%202%20%2A%20%5Cfrac%7Bx%5E%7B2-1%7D%7D%7B4%7D%5C%20dx)
![du = 2 * \frac{x}{4}\ dx](https://tex.z-dn.net/?f=du%20%3D%202%20%2A%20%5Cfrac%7Bx%7D%7B4%7D%5C%20dx)
![du = \frac{x}{2}\ dx](https://tex.z-dn.net/?f=du%20%3D%20%5Cfrac%7Bx%7D%7B2%7D%5C%20dx)
Make dx the subject
![dx = \frac{2}{x}\ du](https://tex.z-dn.net/?f=dx%20%3D%20%5Cfrac%7B2%7D%7Bx%7D%5C%20du)
The given integral becomes:
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \int\limits {\frac{x}{x^4 + 16}} \, * \frac{2}{x}\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20%2A%20%5Cfrac%7B2%7D%7Bx%7D%5C%20du)
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \int\limits {\frac{1}{x^4 + 16}} \, * \frac{2}{1}\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%20%7B%5Cfrac%7B1%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20%2A%20%5Cfrac%7B2%7D%7B1%7D%5C%20du)
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \int\limits {\frac{2}{x^4 + 16}} \,\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%20%7B%5Cfrac%7B2%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%5C%20du)
Recall that: ![u = \frac{x^2}{4}](https://tex.z-dn.net/?f=u%20%3D%20%5Cfrac%7Bx%5E2%7D%7B4%7D)
Make
the subject
![x^2= 4u](https://tex.z-dn.net/?f=x%5E2%3D%204u)
Square both sides
![x^4= (4u)^2](https://tex.z-dn.net/?f=x%5E4%3D%20%284u%29%5E2)
![x^4= 16u^2](https://tex.z-dn.net/?f=x%5E4%3D%2016u%5E2)
Substitute
for
in ![\int\limits {\frac{x}{x^4 + 16}} \, dx = \int\limits {\frac{2}{x^4 + 16}} \,\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%20%7B%5Cfrac%7B2%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%5C%20du)
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \int\limits {\frac{2}{16u^2 + 16}} \,\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%20%7B%5Cfrac%7B2%7D%7B16u%5E2%20%2B%2016%7D%7D%20%5C%2C%5C%20du)
Simplify
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \int\limits {\frac{2}{16}* \frac{1}{8u^2 + 8}} \,\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%20%7B%5Cfrac%7B2%7D%7B16%7D%2A%20%5Cfrac%7B1%7D%7B8u%5E2%20%2B%208%7D%7D%20%5C%2C%5C%20du)
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \frac{2}{16}\int\limits {\frac{1}{u^2 + 1}} \,\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B2%7D%7B16%7D%5Cint%5Climits%20%7B%5Cfrac%7B1%7D%7Bu%5E2%20%2B%201%7D%7D%20%5C%2C%5C%20du)
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \frac{1}{8}\int\limits {\frac{1}{u^2 + 1}} \,\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B1%7D%7B8%7D%5Cint%5Climits%20%7B%5Cfrac%7B1%7D%7Bu%5E2%20%2B%201%7D%7D%20%5C%2C%5C%20du)
In standard integration
![\int\limits {\frac{1}{u^2 + 1}} \,\ du = arctan(u)](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7B1%7D%7Bu%5E2%20%2B%201%7D%7D%20%5C%2C%5C%20du%20%3D%20arctan%28u%29)
So, the expression becomes:
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \frac{1}{8}\int\limits {\frac{1}{u^2 + 1}} \,\ du](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B1%7D%7B8%7D%5Cint%5Climits%20%7B%5Cfrac%7B1%7D%7Bu%5E2%20%2B%201%7D%7D%20%5C%2C%5C%20du)
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \frac{1}{8}*arctan(u)](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B1%7D%7B8%7D%2Aarctan%28u%29)
Recall that: ![u = \frac{x^2}{4}](https://tex.z-dn.net/?f=u%20%3D%20%5Cfrac%7Bx%5E2%7D%7B4%7D)
![\int\limits {\frac{x}{x^4 + 16}} \, dx = \frac{1}{8}*arctan(\frac{x^2}{4}) + c](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7B%5Cfrac%7Bx%7D%7Bx%5E4%20%2B%2016%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B1%7D%7B8%7D%2Aarctan%28%5Cfrac%7Bx%5E2%7D%7B4%7D%29%20%2B%20c)
9514 1404 393
Answer:
- Ram -- ₹1200
- Kalpana -- ₹800
Step-by-step explanation:
Their age total is 15+10=25, so Ram will get 15/25 = 0.6 of the total. Kalpana will get the remaining 0.4 of the total.
Ram receives 0.6 × ₹2000 = ₹1200
Kalpana receives 0.4 × ₹2000 = ₹800
We can find the side length of square 3 by dividing by 4, which is 9.
Then, we find the side length of square 2 by dividing it by 4, which is 12.
To find the AREA of square 1, we do a^2+b^2=c^2. This is basically adding up area of square 1 and square 2 to get square 3.
a^2+b^2=c^2
9^2+12^2=c^2
81+144=225
So the area is 225 units.
p=15250
r=7.5/100=0.075
y = 15250*(1 - 0.075)^x
after 8 years it would be
x = 8
y = 15250*(1 - 0.075)^8
y = $8,173.42
after 8 years the value of the car is going to be $8,173.42