Answer:
-5 meters
Explanation:
x = 3t² + 2t − 5
The initial displacement is when t = 0.
x = 3(0)² + 2(0) − 5
x = -5
Answer:
115 m/s, 414 km/hr
Explanation:
There are two forces acting on a skydiver: gravity and air resistance (drag). At terminal velocity, the two forces are equal and opposite.
∑F = ma
D − mg = 0
D = mg
Drag force is defined as:
D = ½ ρ v² C A
where ρ is the fluid density,
v is the velocity,
C is the drag coefficient,
and A is the cross sectional surface area.
Substituting and solving for v:
½ ρ v² C A = mg
v² = 2mg / (ρCA)
v = √(2mg / (ρCA))
We're given values for m and A, and we know the value of g. We need to look up ρ and C.
Density of air depends on pressure and temperature (which vary with elevation), but we can estimate ρ ≈ 1.21 kg/m³.
For a skydiver falling headfirst, C ≈ 0.7.
Substituting all values:
v = √(2 × 80.0 kg × 9.8 m/s² / (1.21 kg/m³ × 0.7 × 0.140 m²))
v = 115 m/s
v = 115 m/s × (1 km / 1000 m) × (3600 s / hr)
v = 414 km/hr
Answer:
Explanation:
(a) When the plate starts to spin:
Its angular velocity increases, so the angular acceleration is non zero. As the direction of velocity keeps on changing every instant so the linear acceleration is also non zero.
(b) When the plate rotates at constant angular velocity:
Its angular velocity is constant so the angular acceleration is zero. As the direction of velocity keeps on changing every instant so the linear acceleration is also non zero.
(c) When the plate sows to halt:
Its angular velocity decreases, so the angular acceleration is non zero( but negative). As the direction of velocity keeps on changing every instant so the linear acceleration is also non zero.
We know the formula for density = Mass/ volume
So Mass, M = Volume * Density
Volume = 3.5 L= 0.0035
Density = 1.50 g/ml = 1500 
Mass, M = 0.0035*1500 = 5.25 kg
So mass of liquid having density 1.50 g/ml and volume 3.5 liters is 5.25 kg.
Many of today’s mathematicians use computers to test cases that are either too time-consuming or involve too many variables to test manually, allowing the exploration of theoretical issues that were impossible to test a generation ago.
Answer: Option A
<u>Explanation:</u>
One of the most useful inventions in scientific world are the computers. We can use different programming language and create programs in them. These programs help other to solve difficult problems. Most of the theoretical problems in science can be solved by using these programming features in computer within a specific time limit.
Otherwise, earlier mathematician used to take months to solve a complex mathematical problem manually, but now with the inclusion of computers, the mathematician can solve the problems containing more number of variables or other theoretical issues.