Answer:
The fourth pair of statement is true.
9∈A, and 9∈B.
Step-by-step explanation:
Given that,
U={x| x is real number}
A={x| x∈ U and x+2>10}
B={x| x∈ U and 2x>10}
If 5∈ A, Then it will be satisfies x+2>10 , but 5+2<10.
Similarly, If 5∈ B, Then it will be satisfies 2x>10 , but 2.5=10.
So, 5∉A, and 5∉B.
If 6∈ A, Then it will be satisfies x+2>10 , but 6+2<10.
Similarly, If 6∈ B, Then it will be satisfies 2x>10 , and 2.6=12>10.
So, 6∉A, and 6∈B.
If 8∈ A, Then it will be satisfies x+2>10 , but 8+2=10.
Similarly, If 8∈ B, Then it will be satisfies 2x>10. 2.8=16>10.
So, 8∉A, and 8∈B.
If 9∈ A, Then it will be satisfies x+2>10 , but 9+2=11>10.
Similarly, If 9∈ B, Then it will be satisfies 2x>10. 2.9=18>10.
So, 9∈A, and 9∈B.
Answer:
Explanation:
<u>1. Using the minimun number of sheets of paper in the interval [300, 400]</u>
a) Cost: $ 2.00 / 100 sheets
b) 300 sheets / day × $ 2.00 / 100 sheets = $ 6.00 / day
c) Approimately 20 school days per month:
- $ 6.00 / day × 20 day = $ 120.00
<u>2. Using the maximum number of sheets of paper in the interval [300, 400]</u>
a) Cost: $ 2.00 / 100 sheets
b) 400 sheets / day × $ 2.00 / 100 sheets = $ 8.00 / day
c) Approimately 20 school days per month:
- $8.00 / day × 20 day = $ 160.00
<u>3. Middle value:</u>
Calculate the middle value between $160.00 and $120.00
- [$120.00 + $160.00] / 2 = $140.00
Thus, the answer is the option A.