1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
3 years ago
10

A population that consists of 500 observations has a mean of 40 and a standard deviation of 15. A sample of size 100 is taken at

random from this population. The standard error of the sample mean equals:
a. 2.50.
b. 12.50.
c. 1.343.
d. 1.50.
Mathematics
1 answer:
Alex17521 [72]3 years ago
7 0

Answer:

<h3>The option D) 1.50 is correct</h3><h3>That is the standard error of the sample mean is 1.50</h3>

Step-by-step explanation:

Given that a population that consists of 500 observations has a mean of 40 and a standard deviation of 15.

A sample size is 100  taken at random from the given population.

<h3>To find the standard error of the sample mean :</h3>

From the given Mean=40 and \sigma =15

For N=100

<h3>The formula for standard error is SE_{mean}=\frac{\sigma}{\sqrt{N}}</h3>

Substitute the values in the above formula we get

SE_{mean}=\frac{15}{\sqrt{100}}

=\frac{15}{10}

=1.50

∴ SE_{mean}=1.50

<h3>∴ The standard error of the sample mean is 1.50</h3><h3>Hence the option D) 1.50 is correct</h3>
You might be interested in
Determine the sum: (14abc2 + 12a2b + 16b2c) + (−3abc2 + 2b2c).
Alenkinab [10]
The answer is 11abc^2 + 12a^2b + 18b^2c because:
14abc^2-3abc^2 is 11abc^2
12a^2b + 0 = 12a^2b
16b^2c +2b^2c = 18b^c
4 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Hello can you please help me posted picture of question
loris [4]
The sample space will be: {1, 2, 3, 4, 5, 6}

Event A is: {Rolling 1,2 or 3}

Complement of event A will contain all those outcomes in the sample space which are not a part of event A.

So, complement of event A will be: {Rolling a 4,5 or 6}

Thus option A gives the correct answer
3 0
3 years ago
What happened to the guy who lost the pie eating contest
ValentinkaMS [17]
He probably didnt get diabetes

4 0
3 years ago
A total of 40 people made cakes for a bake sale.  Each person made 3 cakes.  Ms. Sanchez
Elena L [17]
18 chocolate cakes were made. 40(3)= 120 cakes in total. 15%=.15 .15(120)= 18 
7 0
3 years ago
Other questions:
  • For numbers 10a-10b use place value to find the product 3x600=3×_hundreds
    10·1 answer
  • Sharon needs 3.5 yards or fabric to make a dress for herself and 2.25 yards of the same fabric to make a matching dress for her
    15·1 answer
  • 58−(14)2=58-142= ________
    12·2 answers
  • The sum of 4 consecutive integers is 122. What is the third number in this sequence?
    13·1 answer
  • Please help I don't know how to solve also can you explain<br>​
    7·1 answer
  • Please Help!! 8th Grade
    7·1 answer
  • Instructions: Find UF if FR= 8.<br> Help please
    10·1 answer
  • Jana needs new school clothes. She decides to buy 4 shirts for 15$ each and 2 pairs of pants for 35$ each. if the sales tax is 8
    12·1 answer
  • Which statement BEST describes the equation where A represents the initial value and x represents time in years?
    5·1 answer
  • What is the surface area of the rectangular prism?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!