To solve this problem it is necessary to apply the concepts related to heat exchange in the vegetable and water.
By definition the exchange of heat is given by

where,
m = mass
c = specific heat
= Change in temperature
Therefore the total heat exchange is given as


Our values are given as,
Total mass is
= 200lb ,however the mass of solid vegetable and water is given as,



Replacing at our equation we have,



Therefore the heat removed is 22411.2 Btu
The compass is designed and developed to use a pendulous system to improve horizontality.
<h3>What is a compass?</h3>
A compass can be defined as a scientific instrument that contains a magnetized pointer, which is used to show and indicate the following four (4) main cardinal directions:
Basically, the compass is a scientific instrument that's designed and developed to use a pendulous system to improve horizontality.
Read more on compass here: brainly.com/question/11165627
#SPJ12
Answer:
the reflected wavelength is lano = 4.55 10⁻⁷ m which corresponds to the blue color
Explanation:
This is a case of reflection interference, we must be careful
* There is a 180º phase change when light passes from the air to the soap film (n = 1,339), but there is no phase change when passing from the pomp to the plastic (n = 1.3)
* the wavelength within the film is modulated by the refractive index
λₙ = λ₀ / n
if we consider these relationships the condition for constructive interference is
2 t = (m + ½) λₙ
2t = (m + ½) λ₀ / n
λ₀ = 2t n / (m + ½)
we substitute the values
λ₀= 2 255 10⁻⁹ 1,339 / (m + ½)
λ₀ = 6.829 10⁻⁷ (m + ½)
let's calculate the wavelength for various interference orders
m = 0
λ₀ = 6.829 10⁻⁷/ ( 0 + ½ )
λ₀ = 13.6 10⁻⁷
it is not visible
m = 1
λ₀ = 6,829 10⁻⁷/ (1 + ½)
λ₀ = 4.55 10⁻⁷
color blue
m = 2
λ₀ = 6.829 10⁻⁷ / (2 + ½)
λ₀ = 2,7 10⁻⁷
it is not visible
therefore the reflected wavelength is lano = 4.55 10⁻⁷ m which corresponds to the blue color