<u>Increase the thickness of the wire</u> would decrease the resistance in a wire
Explanation:
Thicker wires have a larger cross-section that increases the surface area with which electrons can flow unimpeded. The thicker the wire, therefore, the lower the resistance.
Thin wires have very high resistance the reason the thin tungsten in a bulb glows because it is heated from the high resistance of many electrons trying to pass through a very small cross-section.
Alfred Wegener believed that all of the continents were originally attached! By looking at the map, you can see that Africa and South America look like they were once joined. This 'super continent' was known as Pangaea. He also found fossils that proved his point.
Hope this helps :)
The answers are as follows;
a) the inductive reactance is 322 ohm
b) The maximum voltage is 387.5 V
c) The rms and maximum currents in the inductor are 1.2 A and 0.85 A.
<h3>What is the reactance?</h3>
The reactance is obtained from;
XL = 2πfL
XL = 2 * 3.14 * 57.0 * 0.900
XL = 322 ohm
The maximum voltage is obtained as;
Vo = Vrms * √2
Vo = 274 V * √2
Vo = 387.5 V
Io = Vo/XL
Io = 387.5 V/ 322 ohm
Io = 1.2 A
Irms = 274 V/322 ohm
Irms = 0.85 A
Learn more about inductive reactance:brainly.com/question/17129912
#SPJ1
Answer:
Valence electrons
Explanation:
The valence electrons are found in the outermost shell of an atom. They are the most loosely held electrons found within an atom. These valence electrons are involved and are used to form bonds when atoms combines together.
The energy required to remove these loosely held electrons is relatively low compared to electrons located in the inner orbitals. This is why when atoms combines, they use the outermost electrons to form bonds and mimic stable atoms like those of the noble gases.
Answer:
<h2> 145km</h2>
Explanation:
The displacement is a vector quantity, it tells how far away from a point a distance or a destination is
given that the distance covered are
50. km, 30. km, and 65 km
the displacement is expressed as
= 50+30+65
=145km
We actually performed straight addition because in all the movement the antarctic explorers did not record any deviation from the initial direction, hence they maintained a linear movement from the beginning to the end