Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
Answer: D Minarel extraction cannot be done in ways that does not completely destroy the environment
Explanation: Hope this helps !!
Answer:
a) t₁ = 4.76 s, t₂ = 85.2 s
b) v = 209 ft/s
Explanation:
Constant acceleration equations:
x = x₀ + v₀ t + ½ at²
v = at + v₀
where x is final position,
x₀ is initial position,
v₀ is initial velocity,
a is acceleration,
and t is time.
When the engine is on and the sled is accelerating:
x₀ = 0 ft
v₀ = 0 ft/s
a = 44 ft/s²
t = t₁
So:
x = 22 t₁²
v = 44 t₁
When the engine is off and the sled is coasting:
x = 18350 ft
x₀ = 22 t₁²
v₀ = 44 t₁
a = 0 ft/s²
t = t₂
So:
18350 = 22 t₁² + (44 t₁) t₂
Given that t₁ + t₂ = 90:
18350 = 22 t₁² + (44 t₁) (90 − t₁)
Now we can solve for t₁:
18350 = 22 t₁² + 3960 t₁ − 44 t₁²
18350 = 3960 t₁ − 22 t₁²
9175 = 1980 t₁ − 11 t₁²
11 t₁² − 1980 t₁ + 9175 = 0
Using quadratic formula:
t₁ = [ 1980 ± √(1980² - 4(11)(9175)) ] / 22
t₁ = 4.76, 175
Since t₁ can't be greater than 90, t₁ = 4.76 s.
Therefore, t₂ = 85.2 s.
And v = 44 t₁ = 209 ft/s.
Answer:
To balance an equation such as Mg + O2 → MgO, the number of the atoms in the product must equal the number of the atoms in the reactant. Mg + O2 --> MgO. To balance an equation, we CAN change coefficients, but NOT SUBSCRIPTS to balance equations.
Explanation: