Bonding Continuum<span>. Trends in the Periodic Table and </span>Bonding<span>. Ionic </span>Bonds. Ionic bonds<span> are formed between atoms with a large difference in electronegativities. ... The ionic </span>bond<span> is the electrostatic force of attraction between a positive and negative ion.</span>
Answer:
NaOBr (or) Na⁺ ⁻OBr
Explanation:
The Oxo-Acids of Bromine are as follow,
Hypobromous Acid = HOBr
Bromous Acid = HOBrO
Bromic Acid = HBrO₃
Perbromic Acid = HBrO₄
When these acids are converted to their conjugate bases their names are as follow,
Hypobromite = ⁻OBr
Bromite = ⁻OBrO
Bromate = ⁻OBrO₂
Perbromate = ⁻OBrO₃
According to rules, the positive part of ionic compound is named first and the negative part is named second. So, Sodium Hypobromite has a chemical formula of Na⁺ ⁻OBr or NaOBr.
Answer:
C + O2 → CO2
Explanation:
C + O2 → CO ----------------- (1)
from equ (1) on reactant side, C has 1 mole, O has 2 moles
from equ (1) on product side, C has 1 mole, O has 1 mole
Thus, to balance the equation, O should have 2 moles
C + O2 → CO2
30 because it is the highest number of marriage
Answer:
Electrons are far apart from the nucleus as we move down the group.
Explanation:
The ionization energy is the amount of energy which is necessary to remove an electron from an atom.
In an atom there exist a force of attraction at the center (nucleus). This is because of the positive charge which exists in the nucleus. This force of attraction is less felt as the distance between the electron and the proton increases. Hence the ionization energy increases as the number of shells increases for an atom. As we move down the group in the periodic table, the number of shells increases which implies a decrease in ionization energy.