The strength of an acid increases if the stability of conjugate base increases
The stability of a conjugate base increases with the presence of electron with drawing group (electronegative group)
Thus more the electronegativity of an atom attached to a carboxylic acid higher the strength of acid
In these examples CH3CH2CH2CF2CH2COOH contains to electronegative flourine atoms which stabilizes the conjugate base hence this will be the strongest acid among the given acids
Answer : The
for this reaction is, -88780 J/mole.
Solution :
The balanced cell reaction will be,

Here, magnesium (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half oxidation-reduction reaction will be :
Oxidation : 
Reduction : 
Now we have to calculate the Gibbs free energy.
Formula used :

where,
= Gibbs free energy = ?
n = number of electrons to balance the reaction = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = 0.46 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the
for this reaction is, -88780 J/mole.
The mass (in grams) of iron, Fe that can be made from 21.5 g of Fe₂O₃ is 15.04 g
We'll begin by writing the balanced equation for the reaction. This is given below:
2Fe₂O₃ -> 4Fe + 3O₂
- Molar mass of Fe₂O₃ = 159.7 g/mol
- Mass of Fe₂O₃ from the balanced equation = 2 × 159.7 = 319.4 g
- Molar mass of Fe = 55.85 g/mol
- Mass of Fe from the balanced equation = 4 × 55.85 = 223.4 g
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
<h3>How to determine the mass of iron, Fe produced</h3>
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
Therefore,
21.5 g of Fe₂O₃ will decompose to produce = (21.5 × 223.4) / 319.4 = 15.04 g of Fe
Thus, 15.04 g of Fe were produced.
Learn more about stoichiometry:
brainly.com/question/9526265
#SPJ1
Given that 1 mole contains 6.02x10^23 molecules, 3.0x10^23 is just around half a mole. Then we check the number of moles for each choice:
A. This is approximately half a mole, since the molar mass of Br2 is 159.8 g/mol.
B. He has a molar mass around 4 g/mol, so this is 1 mole.
C. H2 has a molar mass of 2.02 g/mol, so this is 2 moles.
D. Li has a molar mass of around 6.97 g/mol, so this is around 2 moles.
Therefore the only choice that fits is A. 80 g of Br2.
Heat; rather, or change of the molecules to make them move faster