Answer:
-21 kJ·mol⁻¹
Explanation:
Data:
H₃O⁺ + OH⁻ ⟶ 2H₂O
V/mL: 50 50
c/mol·dm⁻³: 1.0 1.0
ΔT = 4.5 °C
C = 4.184 J·°C⁻¹g⁻¹
C_cal = 50 J·°C⁻¹
Calculations:
(a) Moles of acid

So, we have 0.050 mol of reaction
(b) Volume of solution
V = 50 dm³ + 50 dm³ = 100 dm³
(c) Mass of solution

(d) Calorimetry
There are three energy flows in this reaction.
q₁ = heat from reaction
q₂ = heat to warm the water
q₃ = heat to warm the calorimeter
q₁ + q₂ + q₃ = 0
nΔH + mCΔT + C_calΔT = 0
0.050ΔH + 100×4.184×4.5 + 50×4.5 = 0
0.050ΔH + 1883 + 225 = 0
0.050ΔH + 2108 = 0
0.050ΔH = -2108
ΔH = -2108/0.0500
= -42 000 J/mol
= -42 kJ/mol
This is the heat of reaction for the formation of 2 mol of water
The heat of reaction for the formation of mol of water is -21 kJ·mol⁻¹.
<u>Answer:</u> The empirical and molecular formula of the compound is
and
respectively
<u>Explanation:</u>
We are given:
Mass of C = 3.758 g
Mass of H = 0.316 g
Mass of O = 1.251 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Carbon =
Moles of Hydrogen = 
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.078 moles.
For Carbon = 
For Hydrogen = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of C : H : O = 4 : 4 : 1
The empirical formula for the given compound is 
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is:

We are given:
Mass of molecular formula = 130 g/mol
Mass of empirical formula = 68 g/mol
Putting values in above equation, we get:

Multiplying this valency by the subscript of every element of empirical formula, we get:

Hence, the empirical and molecular formula of the compound is
and
respectively
If a hypothesis is stated and outcome of the experiment is what was predicted, then it supports the hypothesis. if the experiment does not support the hypothesis, then the outcome was not what was predicted.
Answer:
Ethanol has covalent intramolecular bonds. Ethanol is polar. Ethanol has dispersion intermolecular forces. Dimethyl ether is polar. Dimethyl ether forms hydrogen bonds. Dimethyl ether has dispersion intermolecular forces.
Explanation:
Ethanol is not a carboxylic acid. It is an alcohol and it has covelent intramolecular bonds. It is polar and it also has dispersion intermolecular forces.
Dimethyl ether is also polar and it has forms hydrogen bonds. It also has dispersion intermolecular forces. Dimethyl ether does not have ionic intramolecular forces