Answer:
Electrons have negative charge.
Basis: 1 L of the substance.
(1.202 g/mL) x (1000 mL) = 1202 g
mass solute = (1202 g) x 0.2 = 240.2 g
mass solvent = 1202 g x 0.8 = 961.6 g
moles KI = (240.2 g) x (1 mole / 166 g) = 1.45 moles
moles water = (961.6 g) x (1 mole / 18 g) = 53.42 moles
1. Molality = moles solute / kg solvent
= 1.45 moles / 0.9616 kg = 1.5 m
2. Molarity = moles solute / L solution
= 1.45 moles / 1 L solution = 1.45 M
3. molar mass = mole solute / total moles
= 1.45 moles / (1.45 moles + 53.42 moles) = 0.0264
Answer:

Explanation:
Hello,
In this case, the reaction is:

Thus, the law of mass action turns out:
![Kc=\frac{[CH_3CH_2OH]_{eq}}{[H_2O]_{eq}[CH_2CH_2]_{eq}}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BCH_3CH_2OH%5D_%7Beq%7D%7D%7B%5BH_2O%5D_%7Beq%7D%5BCH_2CH_2%5D_%7Beq%7D%7D)
Thus, since at the beginning there are 29 moles of ethylene and once the equilibrium is reached, there are 16 moles of ethylene, the change
result:
![[CH_2CH_2]_{eq}=29mol-x=16mol\\x=29-16=13mol](https://tex.z-dn.net/?f=%5BCH_2CH_2%5D_%7Beq%7D%3D29mol-x%3D16mol%5C%5Cx%3D29-16%3D13mol)
In such a way, the equilibrium constant is then:

Thereby, the initial moles for the second equilibrium are modified as shown on the denominator in the modified law of mass action by considering the added 15 moles of ethylene:

Thus, the second change,
finally result (solving by solver or quadratic equation):

Finally, such second change equals the moles of ethanol after equilibrium based on the stoichiometry:

Best regards.
Answer:
wave speed
Explanation:
A wave is a disturbance that transmits energy from one place to another without the actual displacement of the particles of the medium.
To find the wave speed we need to determine the product of its frequency and wavelength.
Wave speed = Frequency x wavelength
Frequency of wave is the number of wave that passes through a point at a unit time.
Wavelength is the displacement of a complete wave train.
There are three methods of thermal energy transfer: conduction, convection, and radiation. Air molecules that come into contact with the warmer land and surface of the oceans and lakes increase their thermal energy through conduction.