1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anon25 [30]
3 years ago
12

3" alt="f(x) = {2}^{x} + 3" align="absmiddle" class="latex-formula">
What is the value of f(-2)​
Mathematics
1 answer:
lisov135 [29]3 years ago
4 0

The function is given f(x)=2^x+3.

Now let's solve for f(-2).

f(-2)=2^{-2}+3

Rule of negative exponent: x^{-1}=\frac{1}{x^1}.

f(-2)=\frac{1}{2^2}+3

f(-2)=\frac{1}{4}+\frac{3}{1}

Rule for sum of fractions: \frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}.

f(-2)=\frac{13}{4}

And the result is:

f(-2)=\boxed{\frac{13}{4}=3.25}

You might be interested in
Three straight lines have exactly two points of intersection complete the sentence below : two of the lines must be .....
olga nikolaevna [1]
Paralell i forgot how to spell it lol
4 0
3 years ago
The time, t, required to drive to a certain distance varies inversely with the speed, r. if it takes 12 hours to drive the dista
kap26 [50]
T = k/R  where k is the constant of variation, T=time and R=speed.
Plug in the given values:-
12 = k/60
k = 12*60 = 720
So the equation of variation is T = 720/R

At 85 mph we have

T = 720 / 85 =  8.47 hours (answer)

8 0
3 years ago
Please help me! thank you so much
Luda [366]

The Correct Answer Is f(x)=2.5x+5

7 0
3 years ago
Explain how you could use a number line to show that -4+3 and 3+(-4) have the same value.which property of addition states that
Anna007 [38]
For -4+3,
1. start with zero
2. move to left (-x axis) for 4 units (-4)
3. then move to right (+x axis) for 3 units (+3)

For 3+(-4)
1. Start with zero
2. Move the point to right side by 3 units (+3)
3. then move the point to the left by 4 units (-4)

For both you'll stop at -1.

8 0
3 years ago
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and norm
Igoryamba

Answer:

The curvature is \kappa=1

The tangential component of acceleration is a_{\boldsymbol{T}}=0

The normal component of acceleration is a_{\boldsymbol{N}}=1 (2)^2=4

Step-by-step explanation:

To find the curvature of the path we are going to use this formula:

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where

\boldsymbol{T}} is the unit tangent vector.

\frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find \boldsymbol{r}'(t), we know that \boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so

\boldsymbol{r}'(t)=\frac{d}{dt}\left(cos\left(2t\right)\right)\:\boldsymbol{i}+\frac{d}{dt}\left(sin\left(2t\right)\right)\:\boldsymbol{j}+\frac{d}{dt}\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector

|| \boldsymbol{r}'(t)}||=\sqrt{(-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2} \\|| \boldsymbol{r}'(t)}||=\sqrt{2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4}\sqrt{\sin ^2\left(2t\right)+\cos ^2\left(2t\right)}\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2\sqrt{1}=2

The unit tangent vector is defined by

\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}

\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector

\boldsymbol{T}'=\frac{d}{dt}(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is

||\boldsymbol{T}'||=2\sqrt{\cos ^2\left(x\right)+\sin ^2\left(x\right)} =2

The curvature is

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=\frac{2}{2} =1

The tangential component of acceleration is given by the formula

a_{\boldsymbol{T}}=\frac{d^2s}{dt^2}

We know that \frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| and ||\boldsymbol{r}'(t)}||=2

\frac{d}{dt}\left(2\right)\: = 0 so

a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula

a_{\boldsymbol{N}}=\kappa (\frac{ds}{dt})^2

We know that \kappa=1 and \frac{ds}{dt}=2 so

a_{\boldsymbol{N}}=1 (2)^2=4

3 0
3 years ago
Other questions:
  • The number -4 is 7 more than an unknown number x find the unknown number x
    7·1 answer
  • What is the exact volume of the cylinder?
    10·2 answers
  • What is 485,783 rounded to its greatest place
    11·2 answers
  • Ax+by=(a-b) , bx - ay =(a+b) simultaneous linear equations using cross multiplication
    13·1 answer
  • .;;;;;;;;;;;;;;;;;;;;;;;;
    9·1 answer
  • If a quadrilateral has congruent diagonals, then it is a rectangle What is the inverse of this conditional statement?
    7·1 answer
  • PLZZ I NEED TO KNOW NOW 30 POINTS!!
    8·1 answer
  • UV=TW. Find VX will give you brainliest if it’s correct
    15·1 answer
  • Pleas I really need help with this
    14·1 answer
  • What makes this equation true?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!